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This paper develops a comprehensive pollution index based on EPA (2009) 

methodologies, which contrasts with previous studies that rely on partial measures based 

only on surplus nitrogen stemming from the over-application of fertilizer. Second, it uses 

a directional output distance function on a Bayesian framework, to generate empirical 

estimates of the economic impact associated with hypothetical environmental regulations 

in the dairy sector. Results indicate that on average, values of foregone output following 

regulatory intervention lead to revenue losses ranging from 1.8% to 13.1% across 

different regions between 1978 and 2007.  
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Background 

In 2009, the Environmental Protection Agency (EPA) announced guidelines to impose 

strict reporting standards on greenhouse gas emissions (GHG) across all sectors of the 

U.S. economy. The Agricultural industry in general, and livestock operations in particular 

were listed among the sectors that would be required to participate in this reporting 

process. The objective of the guidelines was to improve the effectiveness of the design of 

programs, voluntary or mandatory, aimed at emission reductions. Any attempt to limit 

emissions, and hence undesirable outputs, imposes additional constraints on firms by 

requiring that inputs be diverted away from production and towards abatement.  This 

article examines the potential impact of these guidelines on dairy farming in the U.S. and 

makes two important contributions to the literature. 

According to the U.S. Department of Agriculture (2013a), in 2012 the United States was 

the single largest producer of fluid milk in the world, with an output of 199 billion 

pounds and $140 billion in economic activity. In addition, the U.S. dairy industry 

accounted for about 900,000 jobs that generated $29 billion in household earnings. 

Furthermore, there were approximately 51,000 dairy farms in operation, of which 97% 

were family owned. Dairy farming was the top agricultural activity in several states 

including California, Wisconsin, New York, Pennsylvania, Idaho, Michigan, New 

Mexico, Vermont, Arizona, Utah, and New Hampshire.  

On the downside, the U.S. dairy industry was responsible for generating 137 

million metric tons of Greenhouse Gas (GHG) emissions in 2008 (Thoma et al. 2012) and 

this has trended upward for a number of years (EPA 2013a). The Environmental 
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Protection Agency (EPA), which has been charged with monitoring and regulating GHG 

emissions in the U.S., launched a Greenhouse Gas Reporting Program (GHGRP) in 2009. 

This program requires several sectors to report directly their GHG emissions. The goal is 

to better understand where these emissions are coming from and to improve the design of 

sound policies and regulations. EPA (2009) listed the agricultural industry in general and 

livestock operations in particular among sectors that would be required to participate in 

this reporting process.  

Bearing the above in mind, this article sets out to establish how these EPA 

guidelines could impact dairy farming in the U.S. In doing so, it makes two important 

contributions to the literature. First, it develops a new comprehensive pollution index for 

dairy farms that combine livestock emissions constructed using EPA (2009) 

methodologies, with fuel and fertilizer emissions. By contrast, previous studies (e.g. 

Reinhard, Lovell, and Thijssen 1999; Fernandez, Koop, and Steel 2002) have accounted 

only for surplus nitrogen generated from the over-application of fertilizer. Second, it uses 

a directional output distance function along with a Bayesian framework, to estimate the 

likely economic costs associated with hypothetical environmental regulations, and 

abatement activities in the dairy sector. Moreover, Isik (2004) argues that an important 

missing link in the literature is quantifying the cost of environmental regulations in order 

to evaluate the effectiveness of alternative policies. This article addresses this gap by 

establishing the costs of regulatory intervention in major milk producing areas across the 

U.S.  

Abatement activities and environmental regulations are two approaches aimed at 

pollution reduction, which are already utilized and that could be implemented on a wider 
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scale. Statutory approaches include the Clean Air Act Amendments (1990), which 

envisaged a market driven process and, more recently, the American Clean Energy and 

Security Act of 2009 that was debated but not passed by the U.S. Congress. Anaerobic 

digester technology, which is a form of a manure management system, is an example of a 

voluntary abatement approach. Such systems are good for the environment because they 

help to capture and burn methane that would have otherwise escaped into the atmosphere. 

Though digester systems have multiple benefits, they have not been widely adopted in the 

U.S. (Bishop and Shumway 2009) and are more suitable for large operations because of 

pronounced economies of scale in both their construction and maintenance (Key and 

Sneeringer 2012). 

This article considers the opportunity cost of abatement activities, and the cost of 

environmental regulation. Over the years, traditional methods of productivity analysis 

that model polluting-technologies have focused on obtaining measures of conventional 

indexes of productivity change, as well as conventional measures of technical efficiency 

(Reinhard, Lovell, and Thijssen 1999). In the presence of environmentally detrimental 

by-products, a key factor that has usually been sidestepped has been the impact of 

abatement activities, as well as the cost of environmental regulation in the dairy sector. In 

this article, the modeling will assume a polluting technology and therefore will 

incorporate both desirable and undesirable outputs. The article compares two 

representative firms, one in an unregulated environment (Case 1), and the other under 

regulation (Case 2).  

In Case 1, the unregulated firm maximizes profits by radially expanding its output 

vector towards the frontier in a manner that expands the production of the desirable 
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output without contracting production of the undesirable output. However, the key 

assumption is that the representative firm neither diverts inputs, nor allocates any 

resources towards abatement activities. Case 2 assumes that a policy is in place that seeks 

to minimize the production of the undesirable output, either by having a regulator impose 

a cap on the production of the undesirable output, or through a market mechanism that 

levies a monetary charge on the production of the undesirable output. In either case, the 

overarching goal would be the reduction of emissions. The movement away from the 

unregulated point to a different point on the frontier, with less of both outputs, desirable 

and undesirable, imposes additional costs to the firm. These costs may be due to the 

diversion of inputs from good production towards abatement activities, and/or giving up 

some production of the good output in order to generate less of the undesirable output. 

Using data for dairy intensive counties from the U.S. Department of Agriculture 

(USDA) Census for several years, this article proposes to estimate the impact that 

abatement activities and environmental regulation would have on dairy production across 

the U.S. The specific objectives are to: 

1. Construct a comprehensive index of an undesirable output using three sources of 

pollution originating from dairy farming: fuel, fertilizer, and livestock; 

2. Establish the value of the foregone desirable output associated with environmental 

regulation, and abatement activities. 

3. Calculate the tradeoff between dairy output and emissions using the output elasticity of 

substitution.  
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Environmental Regulation and Polluting Technologies 

Along with modeling the joint production of desirable as well as undesirable outputs, 

researchers have been interested in measuring the impact of environmental regulation on 

firm output and productivity. The study of the role of environmental regulation and its 

impact on productivity growth can be traced back to the 1980s. Christainsen and 

Haveman (1981) consider the likely contribution of environmental regulations to the 

observed decrease in productivity growth between 1965 and 1979. The authors establish 

that an estimated 8% to 12% of the economic slowdown experienced in the U.S. during 

that period could be attributed to environmental regulations. Gollop and Roberts (1983) 

examine the effect of sulfur dioxide (𝑆𝑂2) emission restrictions on the rate of 

productivity growth during the 1973 to 1979 business cycle. Using a sample of 56 

electric utilities and a translog cost function, they establish that indeed environmental 

regulations had a significant negative impact on the rate of productivity growth with an 

average decline of 0.59% per year over the period analyzed. 

Jorgenson and Wilcoxen (1990) examine U.S. economic growth in the postwar 

period going from 1947 to 1973. The authors conduct simulations of the U.S. economy 

using a general equilibrium model, with and without environmental regulations. They 

provide evidence that the long-run cost of pollution abatement and emissions control 

account for at least 2.6% of U.S. GNP during the period under review. Brannlund, Färe 

and Grosskopf (1995) analyze the impact of environmental regulation on firm profits in 

the Swedish pulp and paper industry. Using a non-parametric programming approach, the 

authors measure the short-run profits, with and without regulation, and use these results 

to determine regulatory costs. They establish that environmental regulations place a 
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burden on the overall industry but the prevailing regulatory system is skewed in favor of 

smaller firms. 

In a different analysis, Hernandez-Sancho, Picazo-Tadeo and Reig-Martinez 

(2000) use a cross section of Spanish producers of wooden goods to analyze the impact 

of environmental regulation in the industry. They develop an output-oriented efficiency 

measure, and their findings indicate that firms involuntarily have to sacrifice production 

of desirable outputs when they are required to reallocate inputs towards waste reduction. 

Isik (2004) examines how differences in environmental regulation in the U.S. dairy sector 

impact the spatial location of dairy operations. Results indicate that stringent 

environmental regulations lead dairy operations to migrate into areas with more lax 

regulation. Picazo-Tadeo, Reig-Martinez and Hernandez-Sancho (2005) construct an 

index to measure the opportunity costs arising from the environmental regulation for a 

sample of Spanish ceramic tile producers using a directional technology distance 

function. These authors find that in the presence of environmental regulation, desirable 

output production drops 2.2%. Conversely, under a free disposability of waste 

assumption, aggregate good output could be increased by 7.0%. Färe, Grosskopf and 

Pasurka (2007) analyze the value of the foregone desirable output associated with 

abatement activities, using a model that distinguishes between an environmental 

production function and a directional environmental distance function. The 

environmental production function credits producers solely for expanding good output, 

whereas the directional environmental distance function credits producers for 

simultaneously raising production of the good output and reducing production of bad 

outputs. Using data for coal-fired power plants they establish a 17.6% reduction in 
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electricity production associated with abatement activities.  

In a study of solid waste generation, Arimura, Hibiki and Katayama (2008) report 

that voluntary approaches that involve self-reporting are more flexible, effective and less 

costly than command-and-control regulatory approaches. Sneeringer and Key (2011) 

observe that environmental regulations in the U.S. livestock industry often vary by 

operation size, with stricter enforcements for larger operations. They find evidence that 

some farms avoid oversight by shrinking their operations to within a threshold that is less 

regulated. More recently, Färe et al. (2012) measure the substitutability of undesirable 

outputs, specifically 𝑆𝑂2 for 𝑁𝑂𝑥 in electric utility plants, using a directional output 

distance function. Calculations based on the Morishima elasticity of substitution between 

the undesirable outputs reveal that indeed 𝑆𝑂2 and 𝑁𝑂𝑥 are substitutes. Thus, increasing 

regulation on the emission of 𝑆𝑂2 leads electric utility plants to substitute for the less 

regulated 𝑁𝑂𝑥. This article builds upon these previous studies by using the directional 

output distance function as a means to evaluate the potential effects of environmental 

regulations on U.S. dairy farms.  

Methodology 

Distance functions (DF), developed by Shephard (1970), are the theoretical basis for 

several recent studies of multi-output and multi-input technologies. Given a technically 

feasible set, the output DF measures the largest radial expansion of an output vector; 

given inputs, while the input DF measures the largest radial contraction of an input 

vector, given outputs (Färe and Primont 1995). When it comes to modeling polluting 

technologies, the DF is not appropriate because it radially expands both the desirable and 
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the undesirable outputs towards the frontier. An alternative is the directional distance 

function (DDF), developed by Chambers, Chung and Färe (1996) and extended as a 

technique for modeling polluting technologies by Chung, Färe and Grosskopf  (1997). 

Since then, several other studies have analyzed the joint production of desirable as well 

as undesirable outputs using the DDF (e.g. Ball et al. 2001; Atkinson and Dorfman 2005; 

Färe et al. 2005; O’Donnell 2007). 

The DDF makes two assumptions: 1) that in a multi-dimensional production 

frontier, the decision-making unit wishes to expand the production of the desirable output 

while contracting the production of the undesirable output; and 2) that there are many 

projections that the directional vector can take to the frontier of the output set. In this 

framework, the distance from an observed point to the frontier can be decomposed into 

measures of technical and of environmental efficiency.  

We begin by defining a technology set as a list of all feasible combinations of 

inputs and outputs. Let 𝑥 ∈  ℜ+
𝑘  be a vector of k inputs, and 𝑦 ∈  ℜ+

𝑚 and 𝑏 ∈  ℜ+
𝑖  be the 

vectors of the desirable and the undesirable outputs respectively. Then, the technology set 

is defined as 

𝑇 =   {(𝑥, 𝑦, 𝑏): 𝑥 ∈  ℜ+
𝑘 , 𝑦 ∈  ℜ+

𝑚, 𝑏 ∈   ℜ+
𝑖 : 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}                                  (1)  

We define an output set 𝑃(𝑥), to be a multi-dimensional production possibility 

frontier that represents the combination of goods (𝑦, 𝑏) that are generated by the firm 

using the input vector, x. More formally, 𝑃(𝑥) = {(𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}. The 

output set is assumed to satisfy the standard production axioms (see Färe and Primont 

1995). In addition, we assume that outputs are weakly disposable (Shephard 1970), which 
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means that it is costly to discard the bad outputs. When firms face environmental 

regulations, disposing of waste becomes a costly undertaking. Another key property is the 

null-joint assumption (Shephard and Färe 1974), which indicates that goods and bads 

must be produced jointly, such that if b = 0, then it is not possible to generate any of good 

y. That is, if (𝑦, 𝑏)  ∈ 𝑃(𝑥), and 𝑏 = 0, then 𝑦 = 0. 

The directional output distance function 

The technology assumed in this article restricts the input directional vector to zero; hence, 

ours is a directional output distance function or DODF (Färe 2010). We let 𝑔 ∈ ℜ𝑚 × ℜ𝑖 

be an output directional vector. The DODF to be modeled takes the form 

�⃗⃗� 𝑜(𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) = max{𝛽: (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}                                           (2)   

where 𝛽 is a scaling factor. The firms’ objective is to expand production of the good 

output by 𝛽𝑔𝑦, and contract the undesirable output by the factor 𝛽𝑔𝑏. For purposes of 

this article, the directional vector, 𝑔 = (𝑔𝑦, −𝑔𝑏), is determined exogenously. The 

properties of the DODF are inherited from the output set and are summarized here.   

First, the DODF is non-negative and concave for all feasible output vectors 

(𝑦, 𝑏)  ∈ 𝑃(𝑥). It also exhibits monotonicity denoted as  

�⃗⃗� 𝑜 (𝑥, 𝑦′, 𝑏; 𝑔𝑦, −𝑔𝑏) ≥  �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏; 𝑔𝑦 , −𝑔𝑏)  ∀  (𝑦′, 𝑏) ≤ (𝑦, 𝑏) ∈ 𝑃(𝑥)                   (3)  

In words, if a firm uses the same amount of inputs but generates more good output and 

less bad output, inefficiency does not increase. Conversely, if the firm raises production 

of the bad output, while holding production of the desirable output constant, then 
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inefficiency does not decrease. Formally, this property can be stated as  

�⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏′; 𝑔𝑦, −𝑔𝑏) ≥  �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏; 𝑔𝑦 , −𝑔𝑏) ∀ (𝑦, 𝑏′) ≤ (𝑦, 𝑏) ∈ 𝑃(𝑥)                     (4)  

Another property of the DODF is weak disposability in good and bad outputs, i.e., 

�⃗⃗� 𝑜 (𝑥, 𝜃𝑦, 𝜃𝑏; 𝑔𝑦 , −𝑔𝑏) ≥ 0 𝑓𝑜𝑟 (𝑦, 𝑏) ∈ 𝑃(𝑥) ∀ 0 ≤ 𝜃 ≤ 1                                            (5)  

This means that firms can proportionally reduce all outputs (Kuosmanen 2005) and that 

abatement requires a reduction in the firm’s activity levels. 

A final important property is translation, which is analogous to the homogeneity 

property of the Shephard (1970) output distance function.  The translation property can 

be expressed as:   

�⃗⃗� 𝑜 (𝑥, 𝑦 + 𝛽𝑔𝑦, 𝑏 + 𝛽𝑔𝑏; 𝑔𝑦, −𝑔𝑏) =  �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) − 𝛽   ∀  𝛽 ∈ ℜ                 (6)  

This property states that if the vector of the good output is expanded by a factor 𝛽, and 

the bad output is contracted by the same factor, then the value of the resulting distance 

function will be more efficient by the amount 𝛽 (Färe et al. 2005).  

Case 1: No regulation 

As indicated above, one of our objectives is to compare two representative firms under 

two alternative regulatory scenarios. In the first case, the representative firm is 

unregulated, and thus maximizes profits by radially expanding production towards the 

frontier in a manner that expands the quantity of desirable outputs without contracting 

production of the undesirable output. Though unregulated, the modeling will assume a 
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polluting technology and therefore will incorporate both desirable and undesirable 

outputs.  

Figure 1 is an illustration of the representative firm for Case 1. Initially, the firm 

is producing at a point inside the output set, labeled 𝐴 = (𝑦1, 𝑏1), that is clearly 

inefficient. The firm’s objective is to maximize the production of the good output, given 

inputs. By expanding the desirable output, while holding the quantity of the undesirable 

output fixed, production moves to the point labeled 𝐵 = (𝑦1 + 𝛽𝑔𝑦, 𝑏1). The firm is 

producing on the boundary of the output set and therefore it is technically efficient. The 

values of the directional vector are given as 𝑔 = (1, 0). These values are chosen for their 

simplicity and for ease of interpretation of the results, and they reflect the firm’s sole 

objective of maximizing production of the desirable output. The shadow price of the 

undesirable output at point 𝐵 is effectively zero. The DODF facing this representative 

firm is given as,  

�⃗⃗� 𝑜(𝑥, 𝑦, 𝑏;  1, 0) = max{𝛽: (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}                                                   (7)  

Case 2: Environmental regulation 

Case 2 assumes that a policy is in place that seeks to minimize the production of the 

undesirable output, either by having a regulator enact a cap on the production of 

undesirable outputs (e.g. EPA 2008 limitations on concentrated animal feeding 

operations), or through a market mechanism that levies a monetary cost on the production 

of undesirable outputs as envisaged by the Clean Air Act Amendments (1990). Either 

way, the overarching goal is the contraction of emissions. The movement away from the 
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unregulated point to a different point on the frontier, with less of both the desirable and 

the undesirable outputs imposes additional costs to the firm. These costs may be in the 

form of firms diverting inputs from good production towards abatement activities, or 

giving up some production of the good in order to generate less undesirable output. 

Figure 2 illustrates the DODF facing a representative firm for this second case. 

The efficient combination of the desirable and the undesirable output is determined by 

the tangency of the price ratio (𝑝𝑏 𝑝𝑦⁄ ) and the frontier of the output set, 𝑃(𝑥). The 

vector 𝑔 = (𝑔𝑦, −𝑔𝑏) represents the directional vector. By the translation property, the 

scaling of the vector, from point A to point B, parallel to the directional vector and 

towards the output set, represents a solution to �⃗⃗� 𝑜(𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) = max{𝛽: (𝑦 +

𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}. The representative firm in figure 2 is initially producing inside 

the output set at point 𝐴 = (𝑦1, 𝑏1). The objective for the firm is to raise its efficiency by 

scaling the vector to point 𝐵 = (𝑦1 + 𝛽𝑔𝑦 , 𝑏1 − 𝛽𝑔𝑏). At the point of tangency, the 

solution to this problem is given by �⃗⃗� 𝑜(𝑥, 𝑦, 𝑏;  1, −1) = 0. The specification for this 

case differs from the first in the values of the directional vector. Here, we choose the 

values 𝑔 = (1,−1) to reflect the firm’s desire to expand production of the desirable 

output while simultaneously contracting production of the undesirable output. These 

values are chosen for their convenience and the ease of interpretation of results and also 

because equal weights for goods and bads are considered suitable.  

The DODF facing the representative firm is given by 

�⃗⃗� 𝑜(𝑥, 𝑦, 𝑏;  1, −1) = max{𝛽: (𝑦 + 𝛽𝑔𝑦, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑃(𝑥)}                                                (8)  
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In the empirical analysis below, we use a quadratic specification for this model because 

we are interested in estimating shadow prices for the undesirable output, and the second-

order approximations will serve to estimate this unknown function (Färe et al. 2005). 

Empirical specification 

Following Kumbhakar and Lovell (2000) we estimate the DODF as a stochastic frontier 

that takes the following form: 

�⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) + 𝜀 = 0                                                                                                     (9)  

where 𝜀 = 𝑣 − 𝑢 represents the statistical and the inefficiency errors, respectively. The 

distributional assumptions adopted are 𝑣~𝑁(0, 𝜎2) and 𝑢~𝐺𝑎(𝜇𝑢, 𝜆) where the latter 

follows from Greene (1990). The quadratic specification used is given by: 

�⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) =

𝛼0 + ∑ 𝛼𝑛𝑥𝑛𝑖𝑡
7
𝑛=1 + 𝜙1𝑦1𝑖𝑡 + 𝜓1𝑦2𝑖𝑡 + 𝛾1𝑏𝑖𝑡 + ∑ ∑ 𝛼𝑛,𝑛′𝑥𝑛𝑖𝑡𝑥𝑛′𝑖𝑡

7
𝑛′=1

7
𝑛=1 +

1

2
𝜙2𝑦1𝑖𝑡

2 +

1

2
𝜓2𝑦2𝑖𝑡

2 +
1

2
𝛾2𝑏𝑖𝑡

2 + ∑ 𝛿𝑛𝑥𝑛𝑡𝑦1𝑖𝑡
7
𝑛=1 + ∑ 𝜏𝑛𝑥𝑛𝑖𝑡𝑏𝑖𝑡

7
𝑛=1 + 𝜅𝑦1𝑖𝑡𝑏𝑖𝑡 + 𝜔𝑦2𝑖𝑡𝑏𝑖𝑡 + 𝜀𝑖𝑡     (10)  

From the translation property, the term �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) − 𝛽 can be substituted by 

�⃗⃗� 𝑜(𝑥, 𝑦 + 𝛽𝑔𝑦, 𝑏 + 𝛽𝑔𝑏; 𝑔𝑦, −𝑔𝑏). Taking the scaling factor 𝛽 to the left hand side, for 

the 𝑘𝑡ℎ observation, 𝛽𝑘 is added to 𝑦𝑘 and subtracted from 𝑏𝑘, hence the revised 

quadratic form is now  

−𝛽𝑘 = �⃗⃗� 𝑜 (𝑥𝑘 , 𝑦𝑘 + 𝛽𝑘, 𝑏𝑘 − 𝛽𝑘𝑔𝑏; 𝑔𝑦, −𝑔𝑏) + 𝜀𝑘                                                          (11)   

In order for the translation property to hold, and to account for our choice of directional 
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vector, we impose the following parameter restrictions, 𝛼𝑛,𝑛′ = 𝛼𝑛′,𝑛, 𝜙1 − 𝛾1 = −1, and 

𝜙2 = 𝛾2 = 𝜔 (Färe et al. 2005). 

The Bayesian framework and endogeneity 

As indicated earlier, we use a Bayesian approach in our estimation, which makes it 

possible to draw exact finite sample inferences concerning the unknown parameters 

(Rossi, Allenby, and McCulloch 2006). In addition, adopting the Bayesian approach 

helps to mitigate problems associated with endogeneity, and facilitates the imposition of 

monotonicity constraints (Fernandez, Koop, and Steel 2002; O’Donnell 2007). Proper 

priors on the parameters of the frontier models are required to ensure the existence of the 

posterior density (Fernandez, Osiewalski, and Steel 1997).  

In estimating equation 10 one concern is that the variable 𝑦1𝑖𝑡 may be correlated 

with the error term; therefore, we postulate the existence of an instrumental variable that 

is independent of the error term. Following Anderson and Hsiao (1982), the lag of 𝑦1𝑖𝑡, 

i.e., 𝑦1𝑖𝑡−1, is selected as the instrument assuming that 𝑐𝑜𝑣 (𝑦1𝑖𝑡−1, 𝜀𝑖𝑡 = 0). The 

resulting system of equations to be estimated is:  

𝑏𝑖𝑡 = 𝑋𝑖𝑡𝛼𝑛 + 𝑦1𝑖𝑡𝜙𝑖 + 𝑦2𝑖𝑡𝜓𝑖 + 𝜀1𝑖𝑡                                                                                       (12) 

𝑦1𝑖𝑡 = 𝑦1𝑖𝑡−1 𝜉𝑖 + 𝜀2𝑖𝑡   

where the second equation models the relationship between current and lagged output. 

Following Rossi, Allenby and McCulloch (2006), we assume a joint distribution for the 

errors 𝜀1 and 𝜀2 such that [
𝜀1

𝜀2
] ~ 𝑁(0,Σ). Similarly, a joint distribution of 
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(𝑏𝑖𝑡, 𝑦1𝑖𝑡) gives us the likelihood 𝑃(𝑦1𝑖𝑡, 𝑏𝑖𝑡|𝜉, 𝜙,Σ). A Bayesian inference is 

implemented by applying the Gibbs sampler consisting of three sets of conditional 

posterior distributions as follows (Conley et al. 2008): 

𝜙|𝜉, Σ, 𝑏𝑡, 𝑦𝑡, 𝑦𝑡−1                                                                                                                     (13)  

𝜉|𝜙, Σ, 𝑏𝑡, 𝑦𝑡 , 𝑦𝑡−1                                                                                                                                                 

Σ|𝜙, 𝜉, 𝛼, 𝑋𝑡, 𝑦𝑡, 𝑦𝑡−1                                                                                                                                          

The full posterior conditional distribution for the parameter space is given as (𝜙, 𝜉,Σ). 

We sample from the posterior and present the results based on a Markov Chain using a 

Gibbs sampler (see Casella and George 1992) of 100,000 draws and a burn-in of the 

initial 10,000. The estimates of the means, standard deviation and numerical standard 

errors, reported in table 2, will be discussed below following the presentation of the data. 

Data 

The dataset utilized for this article is at the county-level and comes from the U.S. 

Department of Agriculture (USDA) census. The USDA census consists of all farms that 

generated and sold $1,000 or more of agricultural products during a given census year. It 

covers just about every facet of U.S. Agriculture and is conducted every 5 years by the 

National Agricultural Statistics Service (USDA 2013b). Census of agriculture data has 

been used previously by several authors, among them Isik (2004) and Sneeringer and Key 

(2011). Isik (2004) relied on data from the 1992 and 1997 census to study the impact of 

environmental regulation on the spatial structure of the U.S. dairy industry, while 

Sneeringer and Key (2011) employed data from the 1997, 2002 and 2007 census to 
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examine the impact of regulatory intervention on the size of livestock operations. In this 

article, we utilize a considerably longer time span, which covers seven census years: 

1978, 1982, 1987, 1992, 1997, 2002, and 2007
3
. The dataset includes a total of 132 

counties, spread across 26 states, covering all geographic regions of the country for a 

total of 924 observations. The ‘State and County Rankings’ volume, published alongside 

every Agricultural Census Report, was used to select the counties included in this article, 

which correspond to those with the highest dairy cow inventories.  

This dataset is then augmented with annual average temperatures at the county 

level obtained from the National Oceanic and Atmospheric Administration (NOAA). 

Available evidence indicates that temperature variability can have significant effects on 

dairy production and hence should be included in the production function (e.g. 

Mukherjee, Bravo-Ureta, and De Vries 2013). Moreover, according to a recent USDA 

(2013c) report, temperature increases ranging from 1.0 C
0
 to 3.0 C

0
 are likely to cause 

declines in yields of major U.S. agricultural commodities. Furthermore, the report 

indicates that livestock productivity is affected by temperature in 4 ways: (1) feed grain 

production; (2) pasture and forage crop production; (3) animal health growth and 

reproduction; and (4) disease and pest distributions.  

The output information derived from the census data is a combination of crop, and 

livestock variables all at the county level. The variables include total number of farms, 

total value of agricultural sales, broken down into crop, and livestock sales. Other 

variables include market value of plant, machinery and equipment, total pastureland in 

acres, harvested cropland in acres, and irrigated land. Total farm expenses are broken 

                                                        
3 The instrumental variable, 𝑦1𝑖𝑡−1, is drawn from the census years between 1974 and 2002. 
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down into feed, fuel and energy, fertilizer and chemical, and labor. Finally, the dataset 

includes a breakdown of livestock inventory, and an inventory of selected crops. 

The quantity of concentrate feed was constructed by dividing the nominal figures 

for total feed expenses per cow by the nominal state level price for 16% feed concentrate 

for the respective year, which was obtained from NASS. The labor input is in worker 

equivalent hours, and is constructed by dividing total labor expenses by the hourly wage 

rate of the state where the respective counties are located. All monetary figures are 

converted into constant 2012 dollars using the producer price index formulae provided by 

the U.S. Department of Labor (2013).  

Construction of the undesirable output 

The few farm level analyses available for dairy consider emissions as emanating solely 

from nitrogen surplus (Reinhard, Lovell, and Thijssen 1999; Fernandez, Koop, and Steel 

2002). By contrast, we introduce an index of pollution that incorporates three major 

sources of pollution: 1) fuel; 2) livestock; and 3) fertilizer. Fuel based emission is 

constructed using data on gas, fuel and oil expenditures. Then, using historical 

conventional gasoline prices from the Energy Information Administration (EIA) of the 

U.S. Department of Energy, the total amount of fuel consumed (in gallons) is calculated. 

Finally, carbon dioxide emission equivalents (𝐶𝑂2𝑒) are estimated using the EPA 

greenhouse gas equivalencies calculator (EPA 2013b). 

The fertilizer-based emission is constructed using information on fertilizer 

expenditures incurred by the dairy operations at the county level. Historical fertilizer 

prices are obtained from NASS and then an estimate of the total amount of fertilizer (in 
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tons) used in the county is computed. The direct emission of nitrous oxide (𝑁2𝑂) derived 

from the nitrogen applied to the soil via fertilizers is calculated using formulae from 

Mosier (1994).  

Livestock based emissions are constructed using methodologies delineated in the 

EPA (2009) guidelines. These emissions, which are measured in metric tons of carbon 

dioxide equivalents (𝐶𝑂2𝑒), are a combination of methane (𝐶𝐻4) and nitrous oxide 

(𝑁2𝑂). Methane (𝐶𝐻4) is a product of total volatile solids excreted per animal type, the 

fraction of volatile solids per animal type that is managed at the dairy facility, and a 

methane conversion factor. The USDA agricultural census does not collect information 

on manure management systems; hence our estimates of (𝐶𝐻4) emission are constructed 

using information about the type, and the size of the herd, and the location of the dairy 

operations. The total volatile solids are a product of the average annual animal population 

at the facility, the typical animal mass for each animal type (for dairy cows, the default 

value is given as 604 kg) and the volatile solids excretion rate for each animal type. The 

volatile solids for each animal type are state specific. These estimates are then multiplied 

by 21, the global warming potential of CH4 (EPA 2009).  

Livestock based 𝑁2𝑂 is a product of the daily total nitrogen excreted per animal 

type. This in turn is a function of the average annual animal population in the facility, the 

typical mass of the livestock, the state where the facility is located, and an emissions 

factor. These estimates are then multiplied by 310, the global warming potential of 𝑁2𝑂 

(EPA 2009). The combination of all three major sources of pollution -- 1) Livestock, 2) 

Fuel, and 3) Fertilizer -- is the measure of total emissions that constitutes the undesirable 



 

 20 

output in this article. 

Table 1 provides descriptive statistics for the variables used in this article. There 

are two desirable outputs consisting of milk and oprod (other products), and one 

undesirable output, emissions. In developing the trade-off between the good and the bad 

output, oprod is held constant. The inputs are cows, labor, and cstock or capital stock (in 

constant 2012 dollars). The cstock is constructed using the perpetual inventory method, 

which is a means of imputing net additions. Using 1978 as the base year, any changes in 

plant, machinery and equipment values in subsequent years are considered to reflect net 

investment in capital, which are added to the base value in order to obtain the variable, 

cstock. Other inputs are cfeed and ofeed representing commercial feed and forage, 

respectively. The variable temp represents average annual temperatures at the county-

level in degrees Celsius. 

 

The shadow price  

Before moving on to the results and analysis, we need to make some comments regarding 

the shadow price of the bad output. We follow Färe et al. (2005) and define it as the value 

of the good output that must be foregone once all inefficiency has been eliminated and 

the firm is producing on the frontier of 𝑃(𝑥). One might also interpret this as the dollar 

value of the undesirable output that is generated at the tangency of the price-line and the 

output frontier. We use the duality between the revenue function and the DODF to derive 

relative shadow prices. Following Chambers, Chung and Färe (1998), we set up the 

revenue function as: 
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𝑅(𝑝𝑦, 𝑝𝑏; 𝛽) = 𝑚𝑎𝑥𝑦,𝑏{𝑝𝑦. 𝑦 − 𝑝𝑏 . 𝑏: �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) ≥ 0}                                   (14)        

The first order conditions associated with revenue maximization are given by: 

(𝑝𝑦. 𝑔𝑦 − 𝑝𝑏𝑔𝑏)∇𝑦 �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) = 𝑝𝑦                                                                    (15)  

(𝑝𝑦. 𝑔𝑦 − 𝑝𝑏𝑔𝑏)∇𝑏 �⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = −𝑝𝑏                                                                (16)  

The ratio from the above expressions gives the relative shadow price as  

𝑝𝑦
𝑝𝑏

⁄ = {𝜕�⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) 𝜕𝑏⁄ }/{𝜕�⃗⃗� 𝑜 (𝑥, 𝑦, 𝑏;  𝑔𝑦, −𝑔𝑏) 𝜕𝑦⁄ }                            (17)  

where 𝑝𝑦 is the market price of good y and 𝑝𝑏 is the shadow price of the bad output. 

Since we know all parts of the equation except for 𝑝𝑏, we can solve for this and thus have 

the needed shadow price. 

 

The Morishima elasticity of output substitution  

We now turn to the Morishima elasticity of output substitution (MES). The MES is “..a 

measure of curvature, or ease of substitution” (Blackorby and Russell 1989, p. 883). In a 

different analysis, Färe et al (2005) define the 𝑀𝐸𝑆 as a measure of changes in the 

desirable-undesirable price ratio relative to changes in the desirable-undesirable output 

quantities, that is, 𝑀𝐸𝑆𝑏𝑦 = {𝜕𝑙𝑛 (𝑝𝑏/𝑝𝑦)/𝜕𝑙𝑛 (𝑦/𝑏)}. Based on the quadratic 

parameterization of the directional distance function, the MES can be expressed as: 
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𝑀𝐸𝑆𝑏𝑦 = 𝑦∗ {(
𝜑2

𝛾1 + 𝛾2𝑏 + 𝜇𝑦
) − (

𝜑1

𝜑1 + 𝜑2𝑦 + 𝜇𝑦
)}                                                        (18) 

In this article, the MES is interpreted as a measure of the ability of the firm to trade 

reductions in dairy output for reductions in emissions. 

The value of the foregone desirable output 

In order to compute the total revenue from the good output foregone following an 

environmental regulatory intervention, we subtract the revenue function for the 

representative firm under regulation from the revenue function of the unregulated firm. 

The revenue function for the unregulated firm (case 1) is given by:  

𝑅1(𝑦2
′ ; 𝑔) = 𝑚𝑎𝑥𝑦{𝑝𝑦𝑦2

′ : �⃗⃗� 𝑜 (𝑥, 𝑦1 + 𝛽𝑔𝑦;  1, 0) ≥ 0}                                                      (19) 

whereas that of the regulated firm (case 2) is given as: 

𝑅2(𝑦2; 𝑔) = 𝑚𝑎𝑥𝑦{𝑝𝑦𝑦2: �⃗⃗� 𝑜 (𝑥, 𝑦1 + 𝛽𝑔𝑦, 𝑏1 − 𝛽𝑔𝑏;  1, −1) ≥ 0}                                (20) 

The difference between the two expressions can be rewritten in a more synthetic form as: 

  𝑉(𝑦2
′ , 𝑦2, 𝑔; 𝑝𝑦) = 𝑅1(𝑦2

′ ; 𝑔) − 𝑅2(𝑦2; 𝑔)                                                                             (21)   

Equation 21 yields the value of the foregone desirable output following the hypothetical 

environmental regulation (Case 2). 

Results 

Now we turn to the results obtained with the county level data for the seven agricultural 

census years: 1978, 1982, 1987, 1992, 1997, 2002 and 2007. The 132 counties included 



 

 23 

in the dataset, spread across 26 states. We group them into 7 geographic regions that 

share similar agro-climatic and market conditions. The regions are: 1) Northeast, 

composed of counties in Connecticut, Maine, Massachusetts, New Hampshire, Vermont, 

and New York; 2) The Mid-Atlantic, comprising counties in Pennsylvania, Maryland, 

and Virginia; 3) The Midwest, with counties in Illinois, Iowa, Michigan, Minnesota, 

Ohio, and Wisconsin; 4) The Pacific, consisting of counties in Oregon, and Washington 

State; 5) Mountain, that includes counties in Colorado, Idaho, New Mexico, and Utah; 6) 

Southern and Plains, consisting of counties in Florida, Louisiana, Oklahoma, and Texas; 

and 7) California. Figure 3 below shows the location of the 7 geographic regions across 

the U.S.  Region 0, which is shown in white in figure 3, consists of states that do not have 

leading dairy counties and thus are not included here. 

We report the posterior parameter estimates (i.e. sample mean, standard deviation 

and numerical standard error
4
) in table 2 based on a Markov chain using a Gibbs sampler 

of 100,000 draws and a burn-in of the initial 10,000. These estimates are dependent on 

the conditional posterior distributions depicted in equation 13, and will also be used to 

derive the shadow value of the undesirable output and the Morishima elasticity of output 

substitution. Geweke’s diagnostics are computed for randomly selected sections of the 

Markov chain and the resulting Z-scores are presented as diagnostic plots in figure A-1 

and A-2. The horizontal dotted lines indicate the 95% confidence interval. A large 

number of the Z-scores fall within the interval indicating convergence (Geweke 1992).  

Average shadow prices are reported for each agricultural census year for the 

                                                        
4
 According to Chibb (1995, p.1315)”..the numerical standard error gives the variation that can be expected 

in the estimate if the simulation were to be done afresh.” 
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seven different regions in table 3 and figure 4 below. To illustrate the meaning of the 

shadow prices in this context, let us take the average $42.7 value for the Northeast. This 

value indicates that $42.7 worth of the desirable output (milk) would have to be foregone 

in order to reduce emissions by one unit (metric ton) at the margin. On the other hand, the 

average dairy operation in California would have to give up only $20.9 of the value of the 

desirable output in order to achieve full efficiency. We interpret these results as follows: 

Northeast dairy operations face the highest marginal abatement cost whereas California 

dairy facilities face the lowest. A carbon tax set at the marginal abatement cost level 

would result in Northeast counties bearing the highest costs relative to other regions. 

The MES is a measure of how the good-bad shadow price ratio changes as the 

desirable-undesirable output ratio changes (Färe et al. 2005). It evaluates the ability of the 

dairy facility to trade reductions in milk for reductions in emissions. The more negative 

the MES estimate, the more difficult it is for the dairy facility to substitute away from 

emissions and towards dairy output. This is because higher elasticity of substitution 

values reflects fewer substitution possibilities. Table 4 and figure 5 present MES 

estimates for the seven different regions. California, with an average estimate of -0.634 

faces the highest elasticity of substitution rates. Conversely, counties in the Northeast 

faced the lowest rates at -0.072. The implication of this result is as follows: California 

dairy operations are producing on a steeper point of the frontier where the ratio of dairy-

output to emissions is high. Reducing pollution by one more unit would require giving up 

more than one unit of the desirable output. We also observe that the elasticity of 

substitution rates trended upwards for all regions over the years, indicating a reduction in 

substitution possibilities from 1978 to 2007. 
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In table 5 and figure 6, we report the total revenues for dairy operations without 

regulation, and the percentage of revenues that would have been lost following a 

hypothetical environmental regulatory framework. We interpret these results as follows: 

In 1978, the average county in the Mountain region would have incurred approximately 

$1.042 million in lost revenues whereas the average county in California would have 

forfeited approximately $6.148 million. These values represent 13.06% and 7.1% of total 

revenue, respectively. Similarly, in 2007 the highest losses were incurred in the Mid-

Atlantic where the average county would have lost approximately $5.998 million. The 

lowest losses on the other hand where in California, where the average county would 

have incurred $9.45 million in foregone revenue, representing 5.16% and 1.8% of the 

corresponding total value of output.  

Another dimension stemming from the analysis concerns technical efficiency 

(TE), which is defined as the ratio of observed to maximum feasible output along the 

frontier 𝑃(𝑥). We report two sets of TE results: 1) the first set consists of TE estimates 

for the regulated firm; and 2) the second set consists of TE estimates for the unregulated 

firm. These estimates are reported in tables 6 and 7, and their graphical illustrations in 

figures 7 and 8. Values less than one are evidence of technical inefficiency. Mid-Atlantic 

and California dairy operations report higher TE scores when there is no regulation. 

Other regions report only slight variations in TE scores, with and without regulation. 

Overall, these TE scores are consistent with findings from traditional stochastic frontier 

studies conducted on dairy farming in the U.S. (Bravo-Ureta et al. 2007). 

Concluding remarks  
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The primary objective of this article was to evaluate the impact of a hypothetical 

environmental regulatory framework on the dairy sector in the U.S. Over the last several 

years, there have been concerted efforts aimed at imposing strict reporting standards on 

GHG emissions across all the sectors of the U.S. economy (U.S. Congress 1990; 

Supreme Court of the United States 2007; EPA 2009). Quantifying the cost of 

environmental regulations in the dairy sector in order to assess policy effectiveness has 

been a missing link in the literature (Isik 2004) and this article addresses this gap by 

establishing such costs across major dairy producing areas of the U.S.  

Based on county level data derived from seven USDA agricultural census for 

1978, 1982, 1987, 1992, 1997, 2002 and 2007, we estimate and report the value of the 

foregone desirable output that would have followed an assumed regulatory intervention. 

We summarize the results of the 132 counties into seven geographic regions that 

represent similar agro-climatic and market conditions. The results reveal discernible 

trends across the various geographical areas. We find large variations in the shadow price 

across regions, with critical policy implications. For example, if the regulatory 

intervention involved a cap on emissions or a carbon tax, the economic costs would be 

higher for dairy operations in the Northeast because this region exhibits the highest 

marginal abatement costs, at $42.7 for the last ton of emission at the margin. On the other 

hand it would have been relatively inexpensive for dairy operations in California to 

pollute because they would have had to pay only $20.9 for the last metric ton of emission 

at the margin. 

The results for the Morishima elasticity of substitution (MES) rates, which are 

interpreted as a measure of the dairy facility’s ability to trade reductions in milk output 
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for reductions in emissions, also provide some useful insights into the impact of 

environmental regulation. We find that California dairy operations face much higher 

MES rates than other parts of the U.S. There could be several reasons behind this. For 

one, California is already heavily regulated with specific State and Federal regulatory 

policy as well as regulatory action at the local level (Sneeringer and Hogle 2008; 

Sneeringer 2011). This points towards fewer substitution possibilities for dairy operations 

located there. The policy implications we draw from these are as follows. A command-

and-control type of intervention, where the regulator imposes a cap on emissions would 

have resulted in dairy operations in California facing huge costs in emission reduction. 

This article demonstrates that the economic impact from any regulatory 

intervention aimed at reducing emission of carbon dioxide equivalent (𝐶𝑂2𝑒) would vary 

significantly across regions in the U.S. with some regions finding it cheaper to pollute 

than to abate. The ability to quantify the economic impact of a regulatory intervention is 

important from a policy perspective because it provides a clear picture of how different 

regions would be impacted by environmental regulations. Thus, these results should 

provide a basis for policy-makers to design sound policy and regulatory decisions.  

Therefore policy-makers ought to consider the cost-effectiveness of such policies 

before implementing them. Imposing a command-and-control approach is both inflexible 

and costly, and will only exacerbate losses to some regions in the country. On the other 

hand, a cap-and-trade regime would also result in unequal benefits. And levying taxes 

above their Pigovian levels only results in excessive abatement (Hart 2008). Conversely, 

promoting renewable energy and supporting voluntary mechanisms that encourage the 

widespread adoption of anaerobic digesters could be viable options. Policy intervention 
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should be directed towards assistance programs such as direct subsidies, loan guarantees, 

tax exemptions, and accelerated depreciation. Other mechanisms include a carbon-offset 

system that compensates dairy operations for 𝐶𝑂2𝑒 reductions. 
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 Figure 1: The directional output distance function for Case 1: No regulation  
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Figure 2: The directional output distance function for Case 2: Environmental regulation 
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Figure 3: The geographic location of dairy counties 
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Figure 4: Average shadow prices ($) 
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Figure 5: Morishima elasticity of substitution estimates  
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Figure 6: Percentage share of total output foregone 
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Figure 7: Average technical efficiency estimates for Case 1 (Unregulated) g = (1, 0) 
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Figure 8: Average technical efficiency estimates for Case 2 (Regulated) g = (1, 1)  
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Figure A-1: Geweke’s diagnostic plot 

 

 

Figure A-2: Geweke’s diagnostic plot for milk(t-1)
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Table 1: Descriptive statistics 

Variable (Units) Mean Std. Dev. Min Max 

MILK (tons)  697,003   14,100,000   3795     430,000,000  

EMISSIONS (tons)  125,079   135,640   1,871   1,352,795  

 

OPROD($’000) 

COWS 

3,294,060 

33,556 

297,939 

36,165 

2,052 

124 

 

394,060 

474,497 

LABOR (hours)  3,888,116   9,226,716   6,452   71,400,000  

CSTOCK ($’000)  158,000   136,000   6,167   1,160,000  

CFEED (tons)  195,828   325,340   3,879     3,293,370  

OFEED (tons)  413,393   394,807   3887     4,124,080  

     

TEMP (Celsius)  8.6   4.0   2.5   23.4  
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Table 2: Summary of Posterior Parameter Estimates  

Variables Parameters Mean  Std. Dev   Num. se  

     Milk(t-1)  ξ 0.200 0.0025 0.0008 

     
Milk (var1) ϕ1 0.230 0.0011 0.0000 

Emissions γ1 = ϕ1 - 1 -0.760 
  

     
Intercept (var2) α0 0.950000 10.0000 0.03200 

Cows (var3) α1 2.400000 0.0920 0.00031 

Cstock (var4) α2 0.000500 0.000048 0.00000 

Labor (var5) α3 0.001100 0.00043 0.00000 

Cfeed (var6) α4 -0.029000 0.0095 0.00003 

Ofeed (var7) α5 0.018000 0.0070 0.00002 

Temp (var8) α6 1.700000 10.0000 0.03200 

Trend (var9) α7 -4.200000 9.9000 0.03400 

Oprod (var10) ψ1 0.000081 0.0000098 0.00000 

0.5*dairy
2
 (var11) ϕ2 0.00000013 0.0000 0.00000 

0.5*cows
2
 (var12) α11 -0.000027 0.000002 0.00000 

0.5*temp
2
 (var13) α66 7.500000 9.9000 0.03500 

 0.5*trend
2 

(var14) α77 25.000000 8.4000 0.02800 

Temp*dairy (var15) δ6 0.012000 0.0022 0.00001 

Trend*dairy (var16) δ7 -0.019000 0.00092 0.00000 

Cows*temp (var17) α16 -0.120000 0.0290 0.00010 

Cows*trend (var18) α17 0.200000 0.0110 0.00004 

 Cstock*temp (var19) α26 -0.000030 0.0000093 0.00000 

 Cstock*trend (var20) α27 0.000017 0.0000038 0.00000 

 Labor*temp (var21) α36 -0.000190 0.000053 0.00000 

 Labor*trend (var22) α37 0.000180 0.000021 0.00000 

 Commfeed*temp (var23) α46 -0.000630 0.0016 0.00001 

 Commfeed*trend (var24) α47 0.000500 0.00049 0.00000 

 Otherfeed*temp (var25) α56 -0.000550 0.00086 0.00000 

 Otherfeed*trend (var26) α57 0.001500 0.00036 0.00000 

Temp*trend (var27) α67 -8.600000 9.2000 0.03200 
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Table 3: Average Shadow Prices ($/Ton) 

Region 1978 1982 1987 1992 1997 2002 2007 Average 

         Northeast 33.26 42.20 39.27 41.40 42.14 38.46 61.80 42.70 

Mid-Atlantic 30.97 42.98 34.94 37.92 27.06 36.09 56.14 38.01 

Midwest 28.76 35.14 32.07 35.10 36.29 33.10 52.60 36.15 

California 22.38 26.54 20.88 19.18 18.96 14.10 24.21 20.90 

Pacific 31.06 37.22 32.26 32.90 32.84 29.19 48.00 34.78 

Mountain 33.79 42.90 35.94 33.75 31.42 25.48 40.14 34.77 

Southern & Plains 34.40 42.87 39.40 37.80 37.81 35.94 56.15 40.62 

Average 30.66 38.55 33.54 34.01 32.36 30.34 48.43 
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Table 4: Morishima Elasticity of Substitution Estimates  

Region 1978 1982 1987 1992 1997 2002 2007 Average 

         Northeast -0.063 -0.068 -0.071 -0.073 -0.074 -0.083 -0.073 -0.072 

Mid-Atlantic -0.113 -0.144 -0.135 -0.140 -0.108 -0.161 -0.146 -0.135 

Midwest -0.119 -0.131 -0.140 -0.136 -0.131 -0.137 -0.144 -0.134 

California -0.226 -0.270 -0.335 -0.422 -0.522 -0.951 -1.711 -0.634 

Pacific -0.091 -0.107 -0.143 -0.169 -0.194 -0.229 -0.199 -0.161 

Mountain -0.039 -0.050 -0.082 -0.107 -0.192 -0.297 -0.310 -0.154 

Southern & Plains -0.076 -0.089 -0.114 -0.146 -0.161 -0.157 -0.134 -0.125 

Average -0.104 -0.123 -0.146 -0.170 -0.197 -0.288 -0.388 
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Table 5: Average Value of Output (‘000) and Share of Total Output (%) Foregone  

 Region    1978 1982 1987 1992 1997 2002 2007  Average  

 Northeast   Value without regulation   22,008   30,672   29,987   32,383   33,080   34,147   47,799   32,868  

 

 Value of foregone output   1,662   2,277   2,054   1,915   1,787   1,653   2,332   1,954  

 

 % Value of lost output   7.55   7.43   6.85   5.91   5.40   4.84   4.88   6.12  

           Mid-   Value without regulation   37,618   69,545   61,450   69,133   53,167   79,795   108,467   68,454  

 Atlantic   Value foregone output   3,576   5,437   4,589   4,436   2,985   4,184   5,598   4,401  

 

 % Value of lost output   9.51   7.82   7.47   6.42   5.62   5.24   5.16   6.75  

           Midwest   Value without regulation   41,646   58,810   58,011   60,777   58,859   56,911   95,786   61,543  

 

 Value foregone output   3,685   4,669   4,142   4,098   3,663   3,088   4,656   4,000  

 

 % Value of lost output   8.85   7.94   7.14   6.74   6.22   5.43   4.86   6.74  

           California   Value without regulation   86,775   139,307   153,497   200,178   267,445   317,530   519,221   240,565  

 

 Value foregone output   6,148   9,093   8,147   8,058   8,410   6,242   9,450   7,935  

 

 % Value of lost output   7.09   6.53   5.31   4.03   3.14   1.97   1.82   4.27  

           Pacific   Value without regulation   25,500   47,674   59,968   76,421   91,420   100,970   138,658   77,230  

 

 Value foregone output   2,730   4,019   4,172   4,652   4,443   3,782   5,449   4,178  

 

 % Value of lost output   10.71   8.43   6.96   6.09   4.86   3.75   3.93   6.39  

           Mountain   Value without regulation   7,979   20,515   27,094   44,621   85,920   130,086   217,384   76,228  

 

 Value foregone output   1,042   2,493   3,169   4,096   4,469   4,412   6,777   3,780  

 

 % Value of lost output   13.06   12.15   11.70   9.18   5.20   3.39   3.12   8.26  

           Southern   Value without regulation   29,111   43,837   55,044   71,306   79,516   72,352   91,788   63,279  

 & Plains   Value foregone output   2,409   3,499   3,939   3,942   3,792   3,145   4,418   3,592  

 

 % Value of lost output   8.28   7.98   7.16   5.53   4.77   4.35   4.81   6.13  

           Average   % Value of lost output   9.29   8.33   7.51   6.27   5.03   4.14   4.08    
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Table 6: Average Technical Efficiency Estimates for Case 1 (Unregulated) g = (1, 0)  

Regions 1978 1982 1987 1992 1997 2002 2007 Average 

North East 0.87 0.9 0.93 0.9 0.89 0.9 0.92 0.90 

Mid-Atlantic 0.91 0.89 0.85 0.98 0.94 0.97 0.96 0.93 

Midwest 0.87 0.91 0.85 0.96 0.94 0.86 0.92 0.90 

California 0.90 0.92 0.93 0.92 0.94 0.93 0.95 0.93 

Pacific 0.89 0.87 0.98 0.84 0.99 0.99 0.79 0.91 

Mountain 0.94 0.86 0.93 0.87 0.95 0.87 0.94 0.91 

Southern & Plains 0.88 0.92 0.96 0.84 0.99 0.82 0.98 0.91 

Average 0.89 0.90 0.92 0.90 0.95 0.91 0.92 
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Table 7: Average Technical Efficiency Estimates for Case 2 (Regulated) g = (1, 1)  

Regions 1978 1982 1987 1992 1997 2002 2007 Average 

North East 0.93 0.94 0.92 0.91 0.93 0.94 0.92 0.93 

Mid-Atlantic 0.90 0.76 0.89 0.92 0.86 0.95 0.89 0.88 

Midwest 0.89 0.9 0.92 0.93 0.92 0.89 0.95 0.91 

California 0.93 0.92 0.82 0.94 0.8 0.89 0.99 0.90 

Pacific 0.99 0.89 0.97 0.99 0.94 0.97 0.94 0.96 

Mountain 0.97 0.91 0.83 0.93 0.83 0.93 0.94 0.91 

Southern & Plains 0.99 0.88 0.78 0.98 0.81 0.78 0.91 0.88 

Average 0.94 0.89 0.88 0.94 0.87 0.91 0.93 
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