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Preface 

 
This paper examines the factors that account for ag-biotech patenting success among universities using a 

dynamic count data model.  It builds a theoretical and econometric model to capture the inherently dynamic and 
nonlinear process of technological innovation, wherein a feedback mechanism from previous success partially 
determines current patent counts.  The econometric estimates reveal the importance to ag-biotech patent 
production of land grant infrastructure, quality faculty, state and institutional funding, patent-oriented technology 
transfer offices, as well as dynamic feedback effects. 
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1. Introduction 
 
 The advent of exclusive property rights for 
university research (specifically the Bayh-Dole act) has 
created the potential for major changes in the missions 
of U.S. universities, especially in the Land Grant system, 
as well as in the overall system of technology creation 
and distribution in agriculture. At the same time, new 
genetic and cloning technologies along with the recently 
created ability to patent plants and living organisms are 
profoundly changing the range of agricultural 
technologies that are likely to be available in the U.S. 
and internationally.  Indeed, as Zilberman, Yarkin, and 
Heiman argue, these new agricultural biotechnologies 
(ag-biotech) and their associated intellectual property 
rights appear to be creating a new paradigm, a veritable 
revolution, in the organization and interaction of 
university research and the agricultural sector.  Under 
this new paradigm, universities emphasize patenting 
innovations, and then granting (at times exclusive) 
licenses to individual companies or in some cases 
investing directly in the development of new products 
and processes through start-ups or other joint ventures.  
 As part of this change, many universities (especially 
land grant institutions) are investing heavily in 
establishing ag-biotech centers, building new laboratory 
and research infrastructure, and hiring faculty, all with 
the intent of advancing their ag-biotech research 
capabilities.1  Beyond the inherent promise of the 
research itself, pay-offs are possible in the classic form 
of public and private research funds in this growth area, 
but also in revenues from patents.  Not surprisingly, 
perhaps, the annual number of ag-biotech patents issued 
to universities grew from 25 to 30 per year in the late 
1980s, to over 150 per year in the mid to late 1990s, and 
appears likely to continue growing at a very rapid rate. 
 The tremendous pace of growth in university 
research and patenting of ag-biotech so far has 
dramatically outpaced economic analyses of the degree 
and effects of ag-biotech patenting at the university 
level.  The seminal studies of the social returns to 
agricultural research and development (Alston and 
Pardey; Just and Huffman) essentially predated the mid-
1990s take-off in ag-biotech patenting, and as such do 
not explicitly incorporate either the potential positive or 
normative effects of ag-biotech patenting on agricultural 
productivity or the broader economy.  A recent flurry of 

                                                           
1 At the University of Wisconsin, for example, a joint state-
university-private effort, the Biostar initiative, will invest over 
$350 million in strengthening the university's research in ag-
biotech. 

research (see for example papers in the conference 
volumes: Santaniello, et al.; and Evenson, et al. ) has 
started the process of evaluating public and private 
incentives of agricultural research with intellectual 
property rights.  While a number of papers have 
developed the theory of public/private interactions (e.g. 
Moschini and Lapan; Rausser, Simon, and Ameden) and 
the economics of intellectual property rights in 
agricultural in general (e.g. Evenson), no study has 
effectively quantified and analyzed the dynamic process 
of ag-biotech patenting at the university level. 
 This paper analyzes the factors that account for ag-
biotech patenting success among universities, seeking to 
fill a void in the literature and provide the necessary 
empirical basis for future theory.  The approach 
developed here builds on Blundell, Griffiths, and Van 
Reenen (1995) who capture the inherently dynamic and 
nonlinear process of technological innovation using a 
dynamic count model, wherein a feedback mechanism 
between previous success in innovation (patent 
production) is incorporated explicitly into the modeling 
structure.  Moreover, by using the panel structure of the 
model, both observed and unobserved components that 
might explain heterogeneity across universities in patent 
production can be examined.  As such, this work 
provides a more realistic analysis than Foltz, Barham, 
and Kim, which used a static model to estimate 
university ag-biotech patenting. 
 This research focuses on patents as a measure of 
intellectual property rights production in ag-biotech.  
The analysis implicitly assumes that patent production 
itself is an output objective of university administrators, 
but it also provides a first-cut measure of the values 
generated from intellectual property rights in ag-biotech.  
While broader studies of patenting (e.g. Pakes; 
Trajtenberg) have shown that the distribution of returns 
to patents is highly skewed, with the vast majority 
having little or no value, a few patents are spectacularly 
lucrative.2 Given that those values will be hard to predict 
ex-ante and the high cost of patent applications, most 
university patents have a low probability of ever 
producing more in licensing revenues than they cost to 
produce.  If, however, each patent is viewed as a random 
draw on a distribution, then a university with more 
patents will clearly have a greater chance of revenue 
generation than one with less, especially if the 
probabilities of success grow with patenting experience.  
Thus, while empirical tests of the pay-offs to ag-biotech 

                                                           
2 For example, in Pakes' classic study of the value of patents 
held by companies, the top 15% of patents represented 
between 60 and 80 percent of the overall distribution of 
values, depending on the country in question. 
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patents are left for future research, some correlation 
between the patent counts used here and university 
revenue generation can be expected. 
 The econometric model of patent production 
developed below combines a negative binomial count 
model with a random-effects panel data model.  As in 
Foltz, Barham, and Kim, the data set used includes all 
major universities, many of whom (e.g. non-land grants) 
might not be expected to have ag-biotech patents.   The 
panel nature of this data set, with repeat observations on 
each university, allows not only for a different statistical 
process to describe whether universities have patents at 
all from the number of patents obtained, but also tests 
for the presence of a dynamic feedback structure in the 
research process.  In other words, this paper places 
special emphasis on understanding how previous patent 
experience (including none) affects current patent 
production and thus tests the extent to which feedback 
effects are important in shaping patenting success. 
 Specifically, the empirical modeling effort tests four 
hypotheses regarding university ag-biotech patent 
production.  They are: 
 
(H1) The presence of correlated dynamic effects, (e.g. 

Zilberman, Yarkin, and Heiman) wherein 
universities with initial success in obtaining ag-
biotech patents receive more patents in the future, 
while those that do not have initial success find it 
difficult to participate in the process.  This 
hypothesis about dynamic effects could be 
supported by a virtuous cycle of licensing and 
research dollars returning to successful patenting 
efforts, or by some significant barriers to entry that 
rise with time (learning costs for catch-up);  

(H2) The presence of industry effects, (e.g. Harvey) 
wherein industry funding will play a critical role in 
shaping the direction and success of university 
research; 

(H3) The Land Grant effect, (e.g. Alston and Pardey) 
wherein the funding provided historically by 
federal and state sources to land grant institutions 
is a major determinant of agricultural research 
output, in this case ag-biotech patent production; 
and, 

(H4) The presence of university specific effects, (e.g. 
Foltz, Barham, and Kim) wherein certain 
universities will have a higher proclivity toward 
patenting than others because of more investment 
in technology transfer offices and other “patent” 
inducing infrastructure. 

 
 The empirical basis for this study is a unique panel 
data set, covering the years 1991 to 1999, constructed 

from various sources, including the U.S. Patent Office, 
the National Science Foundation, and the Association of 
University Technology Managers.  Following the 
elaboration of the theoretical and econometric models of 
patent production in the next two sections, the sources 
and basic characteristics of the data set are detailed. The 
next to last section provides the results of the 
econometric estimation. The last section summarizes the 
key findings of this paper. 
 
2. A Theoretical Framework for Modeling 

University Patent Production 
 
 The primary focus of this paper is to estimate a 
reduced form model of the determinants of ag-biotech 
patent production.  The standard departure point in the 
literature (e.g. Hausman, Hall, and Griliches; Blundell, 
Griffiths, and Van Reenen, 1999) is a patent production 
equation of the form 
 
 Yit = f(xit ,uit )  for i = 1,…N  and t= 1,…T,  (1) 
 
where Yit is a count of patents produced and xit  is a 
vector of the characteristics of university i and general 
conditions outside the university that influence the 
process (e.g. government policy).  The term uit 
represents unobservable university differences.  Let the 
relationship between patents produced, yit, and university 
characteristics, xit, be thought of as the outcome of both a 
research, Rit, and a patenting process, Hit.  The research 
process involves inputs into the production of 
knowledge, often independent of economic 
considerations, while the patenting process will be an 
explicit function of the potential value of that research as 
intellectual property rights and university patenting 
experience.   
 Let the overall research produced by a university, Rit, 
be described by a classic production process using labor, 
capital, and structures (labs, etc.) to produce research in 
the following fashion: 

 
 Rit = r(Lit, Kit, Tit). (2) 
 
In this equation, labor, L, will include the number of 
scientists, the quality of scientists, and the quality of the 
research neighborhood.  The research neighborhood 
accounts for knowledge spillovers and potential 
agglomeration effects.  Capital, K, includes research 
funds from federal, state, industry, and university 
sources.  Structure, T, includes research facilities, labs, 
libraries, etc.  For our purposes, one needs to note that 
the research process happens prior to the patent 
application.  Typically the research leading up to a 
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patent would take a couple of years, if not considerably 
longer.   
 By contrast, the variables influencing the patenting 
process, described in the equation Hit, will be 
contemporaneous to the patent application.  The function 
describing patent development is as follows: 

 
 Hit = h( Dit , Git-1), (3) 
 

where the variable Dit describes labor and capital inputs 
in the technology transfer office and Git-1 represents the 
culture and information that the university has developed 
in producing patents in the past, which feeds into the 
technology transfer process.  Among the key elements of 
Dit will be the technology transfer infrastructure at the 
university, the research neighborhood, and the state 
economic structure.  Better technology transfer offices 
would likely be more able to create value out of research 
through their contacts.  Similarly a vibrant research 
neighborhood provides contacts and networks for 
turning ideas into commercial applications.  
 Having divided out the university characteristics in 
xit one can re-specify the model of patent production in a 
way that takes into account research dynamics.  Here the 
model is 
  
 Yit = f(xit ,uit ) = f( Rit-1 , Hit , uit ),  (4) 
 
where Hit is contemporaneous to patent production while 
Rit has been lagged one period to account for the 
dynamics of the research process.  Note that Hit also 
contains a dynamic element in the information feedback 
effects from past patents, Git-1.  The lagged structure of 
the research process and the dynamic feedback effects 
need to be taken into account in any estimates of the 
patenting process.  The next section develops the 
econometric methods used to investigate the role of 
innovation dynamics. 
 

3. Econometric Approaches to Capture the 
Dynamics of Patent Production 

 
 Models of patent production typically use the count 
data framework (Hausman, Hall, and Griliches; 
Blundell, Griffiths, and Van Reenen, 1995).  These 
models assume either a Poisson or Negative Binomial 
distribution on the dispersion term (Cameron and 
Trivedi). The first moment condition for these models is: 

  β')( itX
it eYE = , (5) 

where Yit represents patents produced.  Accordingly, the 
patent model presented above can be parameterized by 
the following linear equation: 

Xit’β=θo+θ1Lit-1+θ2Kit-1+θ3Tit-1+θ4Dit+θ5Git-1+ηi + νt,   (6) 

where the first four variables represent parameterizations 
of the research process and the next two denote the 
patent application process and experience. The variables 
ηi and νt denote the university and time specific 
unobservables, respectively.  More specifically, Lit-1 
represents the labor inputs (both quantity and quality) in 
the research production process, Kit-1 measures the 
financial capital in the research process, and Tit-1 is the 
physical capital such as labs.  For the moment, all 
variables in the research process are lagged one period.  
The first of the variables in the patent generation process 
Dit represents the degree of university interest and 
competence in patenting innovations.  The last variable, 
Git-1, represents the potential dynamic learning and 
perhaps financing effect from previous successful 
patents in the research area.  The econometric 
justification for its inclusion is further explored below.
 The proposed estimation procedure uses a random 
effects formulation to control for the unobserved 
university specific effect ηi, thereby assuming that the 
unobserved heterogeneity is randomly distributed across 
universities.   The main advantage of the random effects 
model is that it can utilize the panel structure of our data 
set in a more efficient way.   Since a substantial 
proportion of the sample has zero values for all years of 
the dependent variable, a fixed effects model, which 
focuses on year by year variation, would not produce the 
desired information. Also fixed effects models can 
produce noisy results when the explanatory variables are 
slow moving, as for example would be the case of 
faculty numbers and salaries.  In terms of the distribution 
on the disturbance terms, a negative binomial approach 
is chosen here over a poisson model, because the former 
allows more flexibility by not requiring that the mean 
and the variance of the estimated disturbance term be 
equal and instead allowing the dispersion parameters to 
vary across individuals (i.e. universities).
 Formally, the dependent count variable, yit , is 
assumed to be iid negative binomial with parameters αi, 
λ it and φi where we have set λ it = exp(xit β ).  This gives 
yit mean αiλ it /φi and variance (αiλ it /φi )*(1+αi /φi).  In 
the random effects model it is commonly assumed that 
the dispersion parameter, (1+αi /φi )-1,  will vary between 
groups according to a Beta distribution with parameters 
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(a, b)3.  Following Hausman, Hall, and Griliches these 
assumptions produce a model with the joint density for 
the ith group as follows: 

Pr{ ,... }
( )

( )! ( )
( ) ( ) ( )
( ) ( ) ( )

.y y
y
y

a b a b y
a b a b yi iT

it it

it itt
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λ
  (7) 
 
This formulation provides the basis for the log-
likelihood function estimated below. 
 Although, the random effects model takes into 
account unobserved heterogeneity, it does not help to 
explain the origins of this heterogeneity.  However, as 
suggested in the model and the opening of the paper, it 
seems reasonable to hypothesize that earlier patenting 
experience captures some of that heterogeneity.  For 
example, as shown in Table 1, being among the leaders 
in ag-biotech patenting in the pre-sample period (1971-
1990) appears to increase greatly the likelihood of 
producing patents in the sample period.  Thus, one way 
of approaching this issue would be to use pre-sample 
information to parameterize ηi.   
 Blundell, Griffiths, and Van Reenen (1995) present a 
method for using pre-sample information to 
parameterize a part of the unobservable heterogeneity.  
Imagine there is an observable latent variable, Sit , that 
describes the state of a university’s patent searching 
activities.  It will be a function of previous search 
activities, university characteristics, and unobservable 
variables (a university specific effect ηi and a random 
shock variable εit ) in the following manner:  
 

  itiititit xwSwS εη +++= −− 1211 , (8) 

where w1, w2 are constants between zero and one. We 
presume that university characteristics, xit , will in fact 
be related to previous levels of university characteristics 
as well as university patenting such that there will be 
dynamic feedback effects of the form 

  itititit vSxx ++= −− 1211 γγ , (9) 

                                                           
3 See Cameron and Trevedi (1998) for a description of 
Gaussian random effects models which make the alternate 
assumption of a normal distribution on the dispersion 
parameter.  Unfortunately these models do not have clean 
analytics, making estimation less certain.  Cameron and 
Trevedi also develop moment based methods possible with the 
negative binomial model. 

where γ1 and γ2 are constants between zero and one.  
Substituting this definition of xit into equation (8), taking 
expectations over time, t, and assuming stationarity of Sit 
and that the stochastic terms have mean zero (E( εit) = 0 
and E( νit) =0 ) yields a simpler form.  It gives the 
following equation in iS  and ηi: 

  ( )( ) iii SwSw ηγγγ )1(11 12211 −+=−− ,  (10) 

where iS is the expected value of Sit. This equation can 

then be solved for iS  so as to express it as a function of 
ηi and some constants: 

 ( )( )[ ] 1
22111 11)1( −−−−−= γγγη wwS ii . (11) 

Thus, for any university, the search activities will be 
proportional to the unobservable university specific 
effect.  If we are willing to assume that, over a long 
enough time span, the number of actual patents received 
is a reasonable proxy for search activities, then we can 
proxy some of the individual unobservable heterogeneity 
by a pre-sample measure of patenting.  One approach 
used below incorporates a count variable (BEFOREi) to 
capture the number of pre-sample patents as a proxy for 
search activities. 
 An alternative to using this pre-sample information 
to capture university search activity and quality is to use 
a within sample continuous proxy for this variable.  
Using the same assumption that actual patents received 
proxy for the search experience, one can create a 
variable Git , which is the depreciated sum of previous 
patents.  More specifically Git is defined as follows: 
 

  ( ) 11 −−+= ititit GyG δ , (12) 

where δ is the rate at which patenting experience 
depreciates. Git provides a continuous representation 
with a more realistic discounting structure of iS  than in 
equation (11). This is the other approach used in the 
subsequent estimations to capture dynamic effects. 
 
4. Data 
 
 All of the descriptive variables used in the 
econometric analysis are summarized below in Table 2.  
They were constructed as follows: 
Patent Data Source 
The patent data identifies all ag-biotech utility patents 
owned by US universities from a search of the complete  



A Dynamic Count Data Analysis of University Ag-Biotech Patents Foltz, Kim, and Barham 
 

 
Food Marketing Policy Center Research Report No. 56 5 

U.S. patent office database4.  Among European and 
World patents, it is well known that U.S. patents 
represent the more innovative patents because of 
stronger property rights protection5.  The appendix 
describes the process used to determine which patents 
are ag-biotech.  
 Using the definition of ag-biotech in the appendix, 
the search chose all ag-biotech patents with application 
dates after Jan 1, 1971 and through the end of 1999.  
During this time period, a total of 107 universities 
received 795 ag-biotech patents6.  In the period used for 
our estimations, 1991-1998, there were 99 universities 
with ag-biotech patents.  Due to complementary data 
limitations, the actual data set used for the model has 
information on 127 universities of whom 65 received at 
least one ag-biotech patent. Also, a dummy variable, 
YrDum, is included to control for the patent drop after 
1997, because most patents filed in the period 1997-
1999 are still under review.  Thus, patent data from those 
years offer incomplete information on acceptances.   
 Table 1 shows that the top 20 universities, ranked by 
accepted agricultural biotechnology patents during this 
time period, are, with one exception, public land-grant 
institutions, with agricultural colleges. Overall, ag-
biotech patent holdings among U.S. universities are 
moderately concentrated with the top five holders having 
29% of the total number of patents, the top 10 having 
45%, and the top 20 having 63%.  Ag-biotech patent 
holdings among U.S. universities are almost completely 
dominated by public land-grant institutions, which hold 
84% of the total issued in the past 30 years. 
 The rather strong pattern of persistence in ag-biotech 
patent production over the two time periods is 
particularly noteworthy given the dramatic growth of 
patents acquired by universities over the past few years.  
It helps to motivate the use of lagged measures of ag-
biotech patent production in the subsequent estimation.  
As discussed in the previous section, two different 
variables BEFOREi and Git were constructed in order to 
                                                           
4 The database includes only utility patents and not plant 
patents, which provide plant variety protection.  Plant patents 
have lower novelty standards and provide lower levels of 
intellectual property rights than utility patents.  For this 
reason, most genetically altered plants are submitted for utility 
patent protection and very few plant patents involve genetic 
alterations. 
5 In particular recent reticence by European governments to 
patent life forms have made US patents the intellectual 
property right of choice for protecting ag-biotech innovations. 
6 The patent culling technique of reading through patent 
abstracts improves on the methods of our previous research in 
more than doubling the number of patents identified as being 
ag-biotech. 

measure knowledge stock. The variable BEFOREi – the 
number of patents produced by university i before the 
year of 1990 – is created to analyze the effects of patent 
production history in 70's and 80's.  Git is defined as the 
sum of the current patents and discounted previous 
knowledge stock (Git = Yit + (1- δ) Git-1, where Yit is 
university i’s number of patents obtained at time t and δ 
is a discount rate of 30%)7. It captures the dynamics of 
innovation histories. 
Input data sources 
Input data for the study come from National Science 
Foundation (NSF) and the Association of University 
Technology Managers (AUTM) databases. The inputs to 
the research process include labor (L), capital (K), and 
university input variables in the patent production 
process (D)8.  As described in the econometric model the 
relevant measures of research production should be 
lagged in order to reflect possible time lags between the 
start of research and the actual research discovery.  Here, 
a two period lag is selected as most representative of the 
time a successful research project would take. 
Labor 
We developed several measures of labor input to proxy 
for the number and quality of scientists.  Specifically, we 
use: the number of full-time graduate students in 
Agricultural Sciences (ASit), the number of full-time 
graduate students in Biological Sciences (BSit), and the 
number of faculty (NFit) to capture the quantity of labor 
and the average faculty salary (AFit) as a proxy for the 
quality of labor and the university.9  
Capital 
Capital inputs include research funds from federal, state, 
industry, and university sources. The following 
variables, from NSF (2000), are included: federally 

                                                           
7 Because the measure of patent production uses the patent 
application date, for successful applications, as the date of a 
patent, this formulation of Git allows the use of actual patents 
received in the year as a measure of patent process knowledge.  
The typical lag between application and acceptance is about 3 
years.  During those 3 years a patent office may learn much 
about the patent process which could improve the next patent 
application and thus give rise to dynamics in the patent 
process. Git was generated using a 30% discount rate.  
Changing that discount rate to either 10% or 20% did not 
measurably influence the results.  The larger discount rate was 
preferred as it assumed less structure. 
8 All monetary values have been deflated using 1996 as the 
base year. 
9 For any single individual, salary might be a poor proxy for 
quality, as it is just as likely a function of the individual's field 
and longevity.  Averaging across the university, however, it 
should provide a reasonable proxy measure for overall 
university quality. 
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financed R&D expenditures (FEDit), state & local 
government R&D expenditures (STAit), industry R&D 
expenditures (INDit), institutional R&D expenditures 
(INSit), and other R&D expenditures (OTHit). As 
expected, Table 2 shows that the majority of the R&D 
money comes from federal government followed by 
institutional sources, state government and industry.  
Patent Production variables 
As mentioned above, the productive potential of research 
as patents to a university could be affected by a number 
of variables.  We expect that a larger number of 
technology transfer employees would create more 
patents out of research ideas by providing some 
combination of better specialization and more effort in 
the patent production process.  Thus, we include the 
number of employees (measured in full-time equivalents 
in both staff and professional technology transfer 
people) in technology transfer offices (OTTit) as a 
measure of this technology transfer infrastructure 
(AUTM, 1991-1997).  To capture the quality or 
efficiency of the office of technology transfer office, we 
include a variable, EFFOTTit, which measures the 
percent of total invention disclosures for all classes of 
patents that result in actual patent applications.  
 
5. Results 
 
 Table 3 shows the estimates of ag-biotech patent 
production from a maximum likelihood estimation of a 
random effects negative binomial model.  The table 
presents three models, a base model with no dynamic 
effects, a dynamic model with pre-sample measurements 
of heterogeneity, BEFOREi, and a model with 
continuous dynamic patent effects, Git.  All models pass 
a likelihood ratio test of the random effects versus a 
pooled data model at a greater than a 99% level.  Also, 
all models produce estimates of dispersion, the 
parameters of the beta distribution (a,b), which are 
significantly different from zero.  The signs on the 
coefficients on all models are generally as expected, with 
the possible exception of a non-significant negative sign 
on industry financing.  As expected, the time dummy 
captures significantly lower levels of patent acceptances 
for applications made in 1997 and 1998, due to the short 
time horizon in the data. 
 The base case demonstrates most of the effects 
found in the data.  Among the funding variables, state 
and own institutional funding are the only ones to have a 
significant effect on ag-biotech patent production.  The 
lack of a significant effect of industry funding on ag-
biotech patent production, a consistent result across all 
models, suggests that industry funding is not the primary 
driving force in university ag-biotech patent production.  

The positive coefficient on own institutional funding 
gives some evidence of the presence of a virtuous circle 
in ag-biotech funding since some of the own institutional 
funding can come from patent revenues.  The estimates 
also demonstrate evidence of the importance of the land 
grant infrastructure, since one measure of this feature, 
agricultural science graduate students, is positive and 
significant.  The econometric estimates, surprisingly, do 
not support the idea of a strong complementarity 
between research programs in the biological sciences 
and ag-biotech patent production.10 The labor variables 
demonstrate that average faculty salary is significantly 
related to university ag-biotech patent production 
perhaps capturing an effect of faculty quality.  However, 
quantity of faculty fails to explain patent output.  
 The variables measuring university patent 
production efforts again find a similar relationship 
between university patent production and labor variables 
in the technology transfer process.  The technology 
transfer office labor quantity variable is insignificant and 
very close to zero.  On the other hand, the measure of 
technology transfer efficiency (EFFOTTit) in turning 
invention disclosures into patent applications is 
significant and positive.  The strength of this effect 
suggests that this efficiency in managing all invention 
disclosures may carry over into ag-biotech patent 
application management.   
 The second model, which includes the university 
specific variable, BEFOREi , shows little difference in its 
coefficients from the base model.  The pre-sample effect 
variable itself is not significantly different from zero.  
Thus, the model is unable to describe unobserved 
heterogeneity with an "entry stock" variable serving as 
an intercept shifter across universities.  This non-result 
calls into question the hypothesis that those universities 
best poised in 1990 to produce ag-biotech patents, as 
evidenced by a positive ag-biotech track record in the 
1970's and 1980's, are those producing the most in the 
1990's.  Although our funding variables suggest a 
possibility of a virtuous cycle for institutional funding 
and patent acceptances, this particular result on 
BEFOREi  suggests that having had ag-biotech patents in 
the pre-sample period is not a necessary condition of 
later ag-biotech patent production. 
 The dynamic effects formulation with Git, presented 
in the third column, provides a continuous and updated 
version of the pre-sample variable, BEFOREi.  It both 
parameterizes the pre-sample effect, since Git for the first 
year of data contains information on patents in the years 
                                                           
10 Further estimates of potential interaction effects between 
agricultural and biological sciences also did not produce any 
significant effects. 
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previous to the data set, and provides a variable with 
variations within years for universities.  This model does 
give rise to a significant parameter estimate on Git, and 
suggests that a more continuous measure of the potential 
dynamic feedback provides a better method than that 
used in the second to capture the unobserved 
heterogeneity in university patent data. Consistent with 
the results for industrial innovation reported by Blundell, 
Griffiths, and Van Reenen, the results here show 
evidence of history dependence in innovation activities.  
Thus, this dynamic model suggests that there may, in 
fact, be a good deal of learning by doing in the 
university ag-biotech production process.   
 
6. Conclusions 
  
 This work has examined a panel count data model of 
university ag-biotech patent production and introduced a 
method of understanding the underlying nonlinear and 
dynamic process of research and patent generation.  
Modeling this process has produced an econometric 
method focused on understanding unobserved university 
heterogeneity through a dynamic feedback effect.  
Applying this method to university ag-biotech patenting 
data we find strong evidence of a correlated dynamic 
effect in which patenting experience produces more 
patents (H1) and a land grant effect (H3).  We do not 
find any evidence that industry financing increases 
patent production (H2) and find that university proclivity 
toward patenting (H4) has more to do with the quality of 
investments rather than the size of the technology 
transfer infrastructure per se.   
 The results presented here provide some interesting 
points of departure for research administrators at both 
large and small land grant universities.  Dominant 
universities, as measured by their previous patent 
production, tend to produce more ag-biotech patents, as 
the ongoing effect of producing more ag-biotech patents 
clearly spurs the process along.  Thus, lagging 
universities can catch up, but the dynamic feedback 
effects of previous inexperience will slow the catch-up 
process.  Funding variables at least partially within the 
choice set of university administrators, own institutional 
and state financing, are the most highly correlated with 
ag-biotech patent production, which is potentially good 
news for them.  According to these estimations, the best 
method for investing in ag-biotech patent production is 
quality personnel. 
 This research leaves open the fundamental question 
of the value of patents to universities.  This reduced 
form model implicitly assumes that ag-biotech patent 
production is of value to universities, but research has 
not yet demonstrated the degree to which or the scale at 

which this is in fact true. By explaining the dynamics of 
ag-biotech patenting, this paper provides a necessary 
first step in understanding the determinants of values 
created by university ag-biotech patents. Quantifying 
and estimating these values in a more comprehensive 
structural model of university research is left for future 
research. 
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Table 1. University Rankings of Ag-Biotech Patent Production 1971-1999  

University 

Rank 

71-99 

Patents 

71-99 

Pre-Sample 

Rank 71-90 

Patents 

71-90 

UW-Madison 1 53 1 19 

Cornell 2 52 2 16 

Iowa State Univ. 3 47 8 7 

Michigan State Univ. 4 44 45 1 

UC-Davis 5 32 12 6 

Univ. of Florida 6 29 4 10 

Purdue 7 26 3 12 

Univ. of Minnesota 8 26 16 5 

Louisiana State Univ. 9 24 21 3 

NC State Univ. 10 21 5 9 

Texas A&M 11 19 17 4 

UC-Berkeley 12 19 7 9 

Rutgers 13 18 23 3 

Univ. of Georgia 14 17 10 7 

Oregon State 15 14 6 9 

Univ. of Maryland-College 
Park 

16 13 15 5 

Univ. of Pennsylvania 17 13 0 0 

Univ. of Kentucky 18 12 35 2 

Ohio State Univ. 19 11 9 7 

Penn State Univ. 20 11 0 0 
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Table 2.  Data Summary 

Variable Definition Mean Std. Dev. Minimum Maximum 

Yit Number of Ag-biotech patents 0.65 1.61 0 14 

FEDt-2 Federal funding 70665 83511 132 692704 

STAt-2 State funding 7996 12048 0 65600 

INDt-2    Industry funding 6768 7041 0 54573 

INSt-2    Own institutional funding 18219 18470 0 95653 

OTH t-2    Other funding 7950 9228 0 59587 

AS t-2     Agricultural science graduate 
students 

36.84 67.27 0 280 

BS t-2     Biological Science graduate 
students 

189.95 157.07 1 741 

AF t-2     Average faculty salary 50.49 10.45 29.03 107.76 

NF t-2     Number of faculty 819.62 470.45 37 3258 

EFFOTT t Ratio of patent applications to 
invention disclosures 

0.35 0.20 0 1 

OTT t   Number of FTE's in the office 
of technology transfer 

5.26 5.63 0 33 

BEFOREi Number of ag-biotech patents 
(1971-1990) 

1.54 3.14 0 19 

G t-1     Dynamic patenting knowledge 
accumulation 

1.33 2.83 0 23.23 

Note:  N = 561, Number of universities = 127 
FED, STA, IND, INS, OTH, and AF are measured in $1,000. 
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Table 3. Random Effects Negative Binomial Estimation Results (Dependent variable Yit , the count of ag-biotech patents) 

Variable Definition Base Model 
Pre-Sample 

Dynamic Effects 
Continuous Dynamic 

Effects 

FEDt-2 Federal funding 7.14e-07 
(1.85e-06) 

7.15e-07 
(1.85e-06) 

5.42e-07 
(1.68e-06) 

STAt-2 State funding 0.000028 
(9.12e-06)*** 

0.000028 
(9.72e-06)*** 

0.000021 
(9.36e-06)** 

INDt-2 Industry funding -0.000017   
(0.000018) 

-0.000017   
(0.000018) 

-0.000016   
(0.000017) 

INSt-2 Own institutional funding 9.90e-06 
(5.28e-06)* 

9.89e-06 
(5.39e-06)* 

9.58e-06 
(5.14e-06)* 

OTH t-2 Other funding 0.0000175 
(0.000015) 

0.0000174 
 (0.000015) 

0.000016 
(0.000014) 

AS t-2 
Agricultural science graduate 
students 

0.0064 
(0.0020)*** 

0.0064 
(0.0020)*** 

0.0068 
(0.0018)*** 

BS t-2 
Biological Science graduate 
students 

0.00042 
(0.0011) 

0.00042 
(0.0011) 

0.00033 
(0.0010) 

AF t-2 Average faculty salary 0.027 
(0.011)** 

0.027 
(0.011)** 

0.021 
(0.011)* 

NF t-2 Number of faculty 0.00018 
(0.00023) 

0.00018 
(0.00023) 

0.00013 
(0.00021) 

EFFOTT t 
Ratio of patent applications to 
invention disclosures 

1.58 
(0.36)*** 

1.58 
(0.36)*** 

1.54 
(0.36)*** 

OTT t 
Number of FTE's in the office of 
technology transfer 

0.0033 
(0.022) 

0.0033 
(0.022) 

0.012 
(0.022) 

YrDum 1997-1998 -0.66 
(0.18)*** 

-0.66 
(0.18)*** 

-0.77 
(0.19)*** 

BEFOREi 
Number of ag-biotech patents 
(1971-1990)  0.00042 

(0.041) 
-0.012 
(0.037) 

G t-1 
Dynamic patenting knowledge 
accumulation   0.041 

(0.020)** 

Constant  -1.99 
(0.73)*** 

-1.99 
(0.73)*** 

-1.79 
(0.68)*** 

Log- 
likelihood  -459.83 -459.83 -457.70 

N = 561, Number of universities = 127, standard errors in parentheses,  
***, **, * significant at greater than a 1%, 5%, 10% level respectively. 
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Appendix 

Defining Ag-biotech 
 
In order to establish an appropriate ag-biotech patent 
database we use a consistent definition that says that ag-
biotech:   
 
(1) genetically alters some product; and 
(2) uses extensively a product produced on a farm; or 
(3) modifies or improves a product produced on a farm; 

or  
(4) modifies, improves, or produces a food, wood, or 

aqua-culture product.   
 

Note that the above definition includes a large number of 
patents that might not be specific to agriculture.  
However, the search strategy also excludes from our 
definition of ag-biotech products or processes with no 
direct connection to agriculture.  Those excluded 
include: 
 
(1) any animals or plants produced entirely for research 

purposes (e.g., mice, rats, monkeys);  
(2) any animal primarily designed as a pet: e.g. dogs and 

cats;  
(3) any product that merely uses animal or plant cells in 

minor quantities for a non-agricultural product; or  
(4) any vaccine or vaccine technique or disease 

diagnostic technique that is intended primarily for 
use in humans, or on human diseases, or on diseases 
not currently treated in animals. 
 

The database does include patents on plants intended 
only for ornamentation so long as they fit the definition 
of being biotechnology. 
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