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Abstract 

 

Parametric Stochastic Frontier Models are widely used in productivity analysis and are 

commonly estimated using FRONTIER, STATA or LIMDEP packages, which only 

provide point estimates for firm-specific technical efficiency. Confidence intervals for 

technical efficiencies with superior coverage properties than those offered by the Horrace 

and Schmidt (1996) method may be computed using the Bootstrap method introduced by 

Simar and Wilson (2005). To facilitate these calculations, we propose a SAS/IML 

procedure, which computes these confidence intervals for stochastic frontier models with 

or without inefficiency effects. We apply the program to estimating supermarket-specific 

technical efficiency in the U.S. Results indicates that the program works very well and 

produce narrower confidence intervals than those obtain using Horrace and Schmidt 

(1996) method. 
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1. Introduction 

 

The parametric stochastic frontier model (PSFM) was introduced independently by 

Aigner et al. (1977) and Meeusen and van den Broeck (1977) and has been extensively 

used in productivity analysis (see Kumbhakar and Lovell, 2000 and references therein). 

In this model the output of a production unit is specified in terms of a response function 

and a composed error uv− , where v  is a symmetric noise, and u is a nonnegative term 

representing technical inefficiency. In applications, researchers are mainly interested in 

point estimates and confidence intervals for the marginal effects and firm-specific 

technical efficiency. 

 PSFM are commonly estimated by maximum likelihood method using either the 

routine Frontier in LIMDEP or STATA, two general-purpose econometric packages, or 

FRONTIER, a noncommercial special-purpose program (Sena, 1999; Herrero and 

Pascoe, 2002). All of these packages have strengths and weaknesses. First, they provide 

both point estimates and confidence intervals for the model quantities of interest, but only 

point estimates of firm-specific and mean level technical efficiency. Second, although 

FRONTIER has more analytical capabilities compared to LIMDEP, it is less user-

friendly. Third, none of the package allows the user to compute additional quantities 

within the program and thus cannot be used in studies where the model likelihood 

function has to be maximized repeatedly. In her review of FRONTIER and LIMPDEP 

packages, Sena (1999) concludes that the ideal software would be one that combines their 

strengths.  

 In this paper, we propose a program that addresses some of the shortcomings of 

STATA, LIMDEP and FRONTIER with respect to estimation and inference of stochastic 
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frontier models. Our program computes confidence intervals for firm-specific technical 

efficiency using a bootstrap method introduced by Simar and Wilson (2005), which make 

inference about technical efficiency based on their sampling distribution. Previously 

Horrace and Schmidt (1996) proposed an approach for inference about efficiency in 

PSFM based on the percentiles of the estimated distribution of the one-sided error term, 

conditional on the composite error, which is not the sampling distribution of the 

inefficiency estimator.  

 The program is written using matrix language SAS/IML with the optimization 

subroutine NLPQN. The program follows the step-by-step computational processes for 

estimating PSFM by maximum likelihood, thus is more pedagogically useful, whereas 

FRONTIER and the routine frontier in LIMDEP and STATA are in black boxes. In 

addition, the program can be extended to various specifications of frontier models, or 

simplified to a model without inefficiency effects.  

 We apply the program to the estimation of technical efficiencies in the U.S. 

supermarket industry using a cross-section of 772 supermarkets in 2004.  

The rest of the paper is organized as follows. Section 2 presents the model and derives 

the likelihood function. Simar and Wilson (2005) bootstrap method is discussed in 

section 3 and its SAS/IML implementation in section 4. Section 5 discusses some 

extensions of the program. Application to U.S. supermarket industry follows in section 6 

and section 7 concludes. 
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2. Model and likelihood function 

We present the Battese and Coelli (1995) model which is the basic stochastic production 

frontier model of Aigner et al. (1977) with technical inefficiency effects. The model for 

cross-sectional data is given by 

iiii
uvXy −+= β , i=1, …,N,   (1) 

where 
i

y  represents the of logarithm of output for firm i; 
i

X  is a k×1  vector of logarithm 

of inputs of firm i, including a column of ones. This specification corresponds to the 

Codd-Douglas production function. Other formulations such as Translog production 

function are used in applications. 

 β  is a 1×k  vector representing marginal effects. 

 The 
i

v ’s are random noise and are independently and identically distributed as 

),0( 2

v
N σ and are independent from the 

i
u ’s. The 

i
u  represent inefficiency and are assumed 

independently distributed as a truncated (above zero) normal distribution with mean δ
i

Z  

and variance 2

u
σ , where 

i
Z  is a (1xm) vector of firm-specific variables and δ  a 1×m  

vector of unknown coefficients of the firm-specific inefficiency variables.  

 Under the above assumptions and following Battese and Coelli (1995), the density 

function of the composed error uve
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The model log likelihood on the basis of N observations is then given by 
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Using the re-parameterization involving the parameters 222
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log likelihood function is expressed as  
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Firm level technical efficiency is given by  
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density function of the standard normal distribution. 

 Using the data N
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1
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=
, the log likelihood in (3) must be maximized to obtain 

estimates of the parameters β , δ , 2σ , γ  which are then plug in (4) to get point estimates 

of firm-specific technical efficiency N

ii 1
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τ . This is done automatically in STATA and 

LIMDEP by using the routine frontier, or in FRONTIER by typing instructions 

interactively on the screen or using an instruction file.  

 Horrace and Schmidt (1996) proposed an after-estimation formula for confidence 

intervals of firm-specific technical efficiency. They compute a %100)1( α−  confidence 
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where )}/()2/(1{ *1

iiLi
z σµα Φ−Φ= −  and )}/()2/1(1{ *1

iiUi
z σµα Φ−−Φ= − . α is the nominal 

size. 

 However, the above interval considers the parameters of the model to be known 

and therefore do not reflect uncertainty about these parameters. As Wilson and Simar 

(2005) pointed out, it is based on the percentile of the distribution of 
i

iu
e ε|−

, instead of the 

sampling distribution of 
i

τ̂ . 

 

3. Wilson and Simar bootstrap method  

Wilson and Simar (2005) introduced a parametric bootstrap method which we modify to 

incorporate the efficiency model; in their model the one sided error has a half normal 

distribution whereas in our model we have a truncated normal distribution with mean 

expressed as a function of firm-specific inefficiency variables. The method computes 

confidence intervals for firm-specific technical efficiency using its sampling distribution. 

It consists of the following steps: 

(i) Using the data N
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 The bootstrap estimates are then used to compute the mean and percentiles of the 

model parameters β , δ , 2σ , and γ , and each firm’s technical efficiency scores. The 

percentiles can be used to compute 100×α % confidence intervals as 






 − )
2

1()
2

( ˆ,ˆ
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θθ  where 

)(ˆ αθ denotes the 100×α -percentile of B

bb 1

*}ˆ{
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θ , }ˆ ,ˆ  , ˆ , ˆ , ˆ {ˆ
b

**

b

*2

b
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ibbb
τγσδβθ ∈ , α being the nominal 

size. Note that standard software packages FRONTIER, LIMDEP and STATA do not 

provide confidence interval for technical efficiency scores and rely on asymptotic 

normality for inference about the parameter β and δ .  

  

4. SAS/IML implementation of Wilson and Simar bootstrap method 

The program listings in the appendix demonstrate the step-by-step computational process 

for estimation of parametric stochastic frontier models based on the method of Wilson 

and Simar. This method requires repeated maximization of the log-likelihood function 

(3). Each maximization can only be done using nonlinear optimization methods.  

 SAS/IML provides all the pieces necessary to carry out the complete method. It is 

a high-level matrix language for programming purposes that includes a set of build-in 

nonlinear optimization subroutines for estimation of constrained and unconstrained 

parameters through iterative process (SAS Institute, 2000). The SAS/IML program is 

very flexible, thus giving the user control over all aspects of the maximum likelihood, 

and the possibility to compute any quantity of interest.   

 The program consists of two macros: Maximize and bootstrap. We describe each 

macro in turn.  
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4.1. Macro for maximizing the loglikelihood 

Macro Maximize maximizes the log likelihood (3). We select the NLPQN subroutine that 

uses the quasi-Newton optimization method as nonlinear optimization routine. The 

arguments for the NLPQN are: the objective function module, the gradient module, the 

starting values, the parameter constraints, the termination criteria, and the update method. 

We discuss each of the argument in turn.  

 The objective function module “LL” specifies the function to be maximized (the 

log likelihood function given by (3)). Its argument is theta, the column vector of the 

parameters underlying the log likelihood function. Other quantities needed to evaluate LL 

(the observed data) are passed to LL via the global function.  

 The module “GRAD” specifies the gradient function to compute the first-order 

derivatives. The arguments and the quantities needed to evaluate the module are the same 

as in LL. The first-order derivatives are given below: 

'

1

2/12

2/12

2/12

2 ))1((

))1((

)()1(

))1((

)()1(

i

N

i iii

iii

iii X
XyZ

XyZ

ZXyL
∑

=





















−









−

−−−
Φ










−

−−−

+
+−

=
∂

∂

σγγ

γ

σγγ

βγδγ

σγγ

βγδγ
φ

σ

δβ

β
 

'

1

2/12

2/12

2/12

2/12

2/12

2/12

2 ))1((

1

))1((

)()1(

))1((

)()1(

)(

1

)(

)(
i

N

i iii

iii

i

i

iii Z
XyZ

XyZ

Z

Z

ZXyL
∑

=





















−

−










−

−−−
Φ










−

−−−

−









Φ










+
+−

−=
∂

∂

σγγ

γ

σγγ

βγδγ

σγγ

βγδγ
φ

γσ

γσ

δ

γσ

δ
φ

σ

δβ

δ
 



 9













































−

−−−










−

−−−
Φ










−

−−−

−









Φ










+
+−

−−=
∂

∂
∑

=

N

i

iii

iii

iii

i

i

i

iii
XyZ

XyZ

XyZ

Z

Z

Z

ZXy
N

L

1

2/12

2/12

2/12

2/12

2/12

2/12

2

2

22
))1((

)()1(

))1((

)()1(

))1((

)()1(

)(

)(

)()(

2

1

σγγ

βγδγ

σγγ

βγδγ

σγγ

βγδγ
φ

γσ

δ

γσ

δ

γσ

δ
φ

σ

δβ

σσ

∑

































−−

−−−−
+

−

+−










−

−−−
Φ










−

−−−

−









Φ










=
∂

∂
2/122/12

2/12

2/12

2/12

2/12

2/12

))1()(1(2

)]()1)[(21(

))1((

))1((

)()1(

))1((

)()1(

)(2

)(

)(

σγγγγ

βγδγγ

σγγ

δβ

σγγ

βγδγ

σγγ

βγδγ
φ

γσγ

δ

γσ

δ

γσ

δ
φ

γ
iiiiii

iii

iii

i

i

i

XyZZXy

XyZ

XyZ

Z

Z

Z

L

 

 The gradient module is not required in the NLPQN subroutine and when it is not 

specified, the NLPQN subroutine uses numerical approximations of the gradient vector 

by the finite difference method. But, it usually requires more calls to the function module 

for the iterative process to converge. It is better to use these analytic derivatives if they 

are available instead of relying on finite difference approximations.  

 We define the starting values of the iteration process as in Coelli (1994). The OLS 

estimates are obtained and a grid search procedure is used to obtain a starting value for γ .  

 The parameter constraints are specified in the input argument con, which is a 

)2(2 ++× mk  matrix (the model has k  parameters in β , m  in δ , and two additional 

parameters 2σ  and γ ). The first row and second row define the lower and upper bounds 

respectively. Except for γ  and 2σ  all the other elements of the matrix are specified as 

missing values. γ  and 2σ  are constrained with a lower bound of 8101 −× to prevent their 

becoming zero or negative. The upper bound of γ  is 1.  

 The input argument ter specifies a vector of bounds corresponding to a set of 

termination criteria that are tested in each iteration and determine when the optimization 

process stops. Stopping criterion selected is 51)max( −< egradient . The first three 

components of ter vector are set to missing values to allow use of the default values. 
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 Following Coelli (1994), we specify the original Davidon, Fletcher, and Powell 

(DFP) (option [4] =4) as update method for the inverse Hessian matrix. The DFP method 

performs a line search in each iteration on the search direction with quadratic 

interpolation and cubic extrapolation.  

 A call of the NLPQN subroutine returns tow results. The first one is a number rc, 

which, when positive, indicates that the iteration process has terminated successfully with 

one of the specified criteria, and when negative indicates unsuccessful termination. The 

second result is a vector xr of length equal to the length of the starting values matrix, 

which contains the optimal values when 0>rc . These optimal values are then used to 

compute firm-specific technical efficiency scores using (4), to draw values for *

i
v , *

i
u , to 

compute pseudo dependent variable *

i
y , for i=1,…,N as described in step (ii) in the 

method, and to form the pseudo data n

iiiin
yZXD

1

** )},,{(
=

= . 

 

4.2. The macro for estimation of confidence intervals 

Macro bootstrap estimates the confidence intervals of marginal effects and firm-specific 

technical efficiency by bootstrapping. It follows the four steps of Wilson and Simar 

algorithm outlined above. First it uses the original data to maximize the log-likelihood 

function and obtain initial parameters estimates. Second, these initial parameter estimates 

are used to draw the error terms (noise and inefficiency term) and compute the pseudo-

data. Third, the pseudo-data are used to maximize the log-likelihood function using 

macro Maximize and obtain Bootstrap estimates. Fourth, steps 1-3 are repeated B times, 

where B is the number of Bootstrap replications.  
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 Input for this macro consists of the SAS dataset put in the format described 

below, the number of production inputs, the number of inefficiency variables, and the 

number of bootstrap replications. The macro returns  

 Testing for the presence of technical inefficiencies in the data using likelihood- 

ratio test is straightforward using the program. Following Battese and Coelli (1995), the 

null hypothesis is 0:
10

====
m

H δδγ L  . The likelihood ratio test statistic is calculated as  

)}(log)({log2
10

HlikelihoodHlikelihoodLR −−=   

where )(log
0

Hlikelihood  and )(log
1

Hlikelihood are the values of the log likelihood function 

under the null and the alternative hypothesis, respectively. 

 Under 
0

H , LR has an asymptotic distribution which is a mixture of chi-square 

distributions, namely 2

1

1

0
2

1

2

1
χχ +  (Coelli, 1995).  

 

How to use the SAS/IML procedure 

The program listing is given in the appendix. It is very easy to use; all the user has to do 

is to put the data in the following format:   

  1 y1 x11…x1k z11…z1m 

  2 y2 x21…x2k z21…z2m 

  . . . . . . 

  N yN xN1…xNk zN1…zNm 

where the first column list the N firms, the second column represents firms’ outputs, the 

next k columns represent the k inputs and the last m columns represents the m possible 

determinants of technical efficiency.  

 After importing the data as   
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proc import datafile="C:\data.xls" 

out=data replace; 

run; 

the procedure is called using  

%Bootstrap (dsn=data, K=k, M=m, B=b). 

 

5. Extensions  

The SAS/IML program presented in appendix can easily be extended in many ways. For 

panel data, all the user has to do is to specify the appropriate log likelihood function and 

derive the corresponding first-order derivatives. The specification of the composed errors 

can be extended to incorporate heteroscedasticity in both the symmetric component and 

the one-sided component as in Hadri et al. (2003). In the presence of heteroscedasticity, 

the variances of 
i

u  and 
i

v  are not constant across observations. Following Hadri (1999) 

and Hadri et al. (2003), heteroscedasticity can be incorporated multiplicatively by 

specifying the variances of the error components as )exp( ρσ
ivi

V= , and )exp( ϕσ
iui

W= , 

where 
i

V  and 
i

W  are vectors of nonstochastic explanatory variables the researcher 

believes explain differences in variances across observations. In the presence of 

heteroscedasticity, the log likelihood function in (3) is still appropriate, except that the 

variances are replaced by their new expressions.    

 

6. Application 

We apply the program to the estimation of technical efficiency in U.S. supermarket 

industry. Data came from the Trade Dimension database at the Food Marketing Policy 
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Center at the University of Connecticut. It consists of 772 supermarkets (not including 

Wall-Mart) in the U.S. in 2004. Additional information on socio-demographic 

characteristics was obtained from the U.S. Census bureau web page. Output is measured 

by the average weekly dollar sales. We consider two inputs: labor measured by the 

number of full time and part time equivalent employees, and capital by the area of selling 

space. As possible determinants of technical efficiency, we use dummy variables of 

whether s store belongs to a chain, has a pharmacy department or sells liquor. 

Using the SAS/IML program, we compute B=500 bootstrap estimates of the model 

parameters and technical efficiencies. Running the 500 bootstrap replications took 22 

minutes on a 2.40 GHz Pentium 4 processor. Table 1 displays the mean, standard 

deviation, 5% and 95% percentiles of the model parameters. We also display in table 2 

estimates of means and standard deviations obtained using FRONTIER, STATA, and 

SAS/IML side by side. It appears that the two sets of estimates are approximately the 

same.  

Figure 1 plots SAS/IML point estimates and 95% confidence intervals of the ranked 

values efficiency scores. It appears that technical efficiencies are estimated with moderate 

precision as indicated by the relatively narrow 95% confidence intervals.  

Figure 2 plots confidence intervals for technical efficiency using Horrace and 

Schmidt (1996) method. Compared to the Bootstrap estimates, Horrace and Schmidt 

confidence intervals are wider. This may be due to the fact that they do not take into 

account uncertainty about the parameters of the model.  
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7. Conclusion 

In this paper we have proposed a SAS/IML program for estimation and inference in 

parametric stochastic frontier models. The program is useful to practitioners for many 

reasons. First, it computes point estimates and statistically sound confidence interval 

estimates for firm-specific technical efficiency whereas commonly available software 

packages do not have built in commands for obtaining confidence intervals for technical 

efficiency. Second, the program is pedagogically very useful as it demonstrates the step-

by-step estimation process. Third, the program is very flexible and can be extended to 

various specifications of stochastic frontier model. Fourth, researchers may find the 

program useful in conducting Monte Carlo studies to investigate the properties of 

stochastic frontier methods that involve numerical optimization. 
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Appendix: SAS/IML codes 
/**************************************************************************************/ 

/*       SAS/IML Procedure for Bootstrap Computation of Confidence Intervals          */ 

/*       for Technical Efficiencies in Stochastic Frontier Models                     */ 

/**************************************************************************************/ 

 

/*************************************************************************************/ 

/*        Macro MAXIMIZE(dsn=,K=, M=)         */  

/*    Maximizes the log-likelihood;       */  

/*        dsn: dataset           */ 

/*          K: number inputs          */ 

/*     M: number determinants of technical efficiency              */  

/************************************************************************************/ 

 

%macro Maximize(dsn=,K=,M=); 

proc iml; 

reset noname; 

use &dsn var _all_; 

read all var _num_ into Da; 

id=Da[,1]; 

yy=Da[,2]; 

nob=nrow(yy); 

xx = j(nob,1); 

do i=1 to &K; 

 xx = xx||Da[,i+2]; 

end; 

zz = j(nob,1); 

do i=1 to &M; 

 zz = zz||Da[,i+&K+2]; 

end; 

 

/*Module objective function*/ 

 

start LL(theta) global(xx, yy, zz); 

pi = arcos(-1); 

nb = ncol(xx); 

xz = xx || zz; 

nr = ncol(xz); 

n1 = nr+1; 

n2 = nr+2; 

beta=theta[1:nb];delta=theta[(nb+1):nr];sigma=theta[n1];gama=theta[n2]; 

nob = nrow(yy); 

sum = 0;  

do i = 1 to nob;  

d= (zz[i,]*delta)/sqrt(gama*sigma); 

dstar = ((1-gama)*(zz[i,]*delta)-gama*(yy[i]- xx[i,]*beta))/sqrt(gama*(1-gama)*sigma); 

pd = probnorm(d); 

pdstar = probnorm(dstar); 

if pd<=0 then pda=0.1e-8; 

else pda=pd; 

if pdstar<=0 then pdstara=0.1e-8; 

else pdstara=pdstar; 

sum = sum + log(pda)-log(pdstara);  

end; 

f = (nob/2)*(log(2*pi)+log(sigma))+ssq(yy - xx*beta + zz*delta)/(2*sigma) + sum ;      

return(f); 

finish LL; 

 

/*Module gradient*/ 

 

start gradi(theta) global(xx, yy, zz); 

k=ncol(theta); 

g=j(1,k,0); 

nb = ncol(xx); 

nz=ncol(zz); 

xz = xx || zz; 

nr = ncol(xz); 

beta=theta[1:nb];delta=theta[(nb+1):nr];sigma=theta[nr+1];gama=theta[nr+2]; 

nob = nrow(yy);pi = arcos(-1); 

sumbeta = j(nb,1,0); sumdelta = j(nz,1,0); sumsigma = 0; sumgama = 0;  
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do i = 1 to nob; 

es = (yy[i]- xx[i,]*beta + zz[i,]*delta)/sigma; 

es2=(yy[i]- xx[i,]*beta + zz[i,]*delta)*(yy[i]- xx[i,]*beta + zz[i,]*delta)/sigma; 

dstar = ((1-gama)*(zz[i,]*delta)-gama*(yy[i]-xx[i,]*beta))/sqrt(gama*(1-gama)*sigma); 

cdfdstar = probnorm(dstar); 

pdfdstar = (1/sqrt(2*pi))*exp(-dstar*dstar/2); 

d = (zz[i,]*delta)/sqrt(gama*sigma); 

cdfd = probnorm(d); 

pdfd = (1/sqrt(2*pi))*exp(-d*d/2); 

 

sigmastar=sqrt(gama*(1-gama)*sigma); 

sumbeta = sumbeta+(es + (gama/sigmastar)*pdfdstar/cdfdstar)*xx[i,]`; 

sumdelta = sumdelta-(es + (pdfd/cdfd)/sqrt(gama*sigma)-(pdfdstar/cdfdstar)*((1-

gama)/sigmastar))*zz[i,]`; 

sumsigma = sumsigma -(1/(2*sigma))*(1-es2 -((pdfd/cdfd)*d - (pdfdstar/cdfdstar)*dstar)); 

sumgama = sumgama+(pdfd/cdfd)*d/(2*gama)-(pdfdstar/cdfdstar)*((yy[i]-

xx[i,]*beta+zz[i,]*delta)/sigmastar +(1-2*gama)*dstar/(2*gama*(1-gama))); 

end;  

g[1,1:nb]=-sumbeta`; 

g[1,(nb+1):nr]=-sumdelta`; 

g[1,nr+1]=-sumsigma; 

g[1,nr+2]=-sumgama; 

return(g);  

finish gradi; 

 

/*Grid search for starting values*/ 

* Ordinary least squares estimates; 

 

nb = ncol(xx); 

ob1 = inv(xx`*xx)*xx`*yy; 

e = yy - xx*ob1; 

sigma2 = ssq(e)/(nob-nb); 

 

*Grid search for gamma; 

ob = j(1,nb+1,0); 

ob[1:nb]=ob1; 

ob[nb+1]=sigma2; 

pi = arcos(-1); 

nob = nrow(yy); 

xz = xx || zz; 

nb = ncol(xx); 

nr = ncol(xz); 

n1 = nr +1; 

n2 = nr + 2; 

theta0 = j(1,n2,0); 

y = j(1,n2,0); 

x = j(1,n2,0); 

var=ob[nb+1]*(nob-nb)/nob; 

b0 = ob[1];    

do i=1 to nb; 

y[i] = ob[i];  

end;  

  

do i= nb+1 to nr;    

y[i]=0; 

end;  

  

fx = 1e+16; 

gridno = 0.1;  

y6b=gridno;  

y6t=1.0-gridno;  

do y6= y6b to y6t by gridno;    

 y[n2]=y6;   

 y[n1]= var/(1-2*y[n2]/pi);  

 c=(y[n2]*y[n1]*2/pi)**0.5;   

 y[1]=b0+c; 

 f = LL(y);  

 if f < fx then do;   

  fx=f; 

        do i=1 to n2; 

        x[i] = y[i]; 
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        end;  

 end;  

end; 

do i =1 to n2;  

theta0[i]=x[i]; 

end; 

 

/*Options and parameters constraints*/ 

ter = j(1,13,.); 

ter[1]=4000; ter[2]=4000; ter[3]=.; ter[6]=1e-5;ter[9]=0;  

ter[4]=0; ter[5]=0; ter[7]=0; ter[8]=0; 

ter[11]=1e-5; ter[12]=0; ter[13]=1e-5; 

con=j(2,&K+&M+4,.); 

con[1,&K+&M+3]=1e-18; con[2,&K+&M+4]=1; 

option = {0 2 . 4}; 

 

call nlpqn(rc,xr,"LL",theta0,option,con)grd="gradi" tc=ter; 

 

create opt from xr;  

append from xr; 

close opt; 

 

if rc >0 then print '*The iterative process terminates successfully*'; 

 else print '*Warning: unsuccessful termination*'; 

quit; 

%mend; 

 

/*************************************************************************************/ 

/*        Macro BOOTSTRAP(dsn=,K=, M=, B=)          */  

/*    Computes bootstap estimates        */  

/*          dsn: dataset          */ 

/*          K: number inputs           */ 

/*     M: number determinants of technical efficiency              */  

/*     B: number bootstrap replications        */                       

/*************************************************************************************/ 

 

%macro Bootstrap(dsn=,K=,M=,B=); 

 

/*Use original data to maximize the log-likelihood and obtain initial parameter and 

technical efficiencies estimates*/ 

 

%Maximize(dsn=&dsn,K=&K,M=&M); 

proc iml; 

use opt var  _all_; 

read all var _num_ into Pa; 

beta=Pa[1:&K+1]; delta=Pa[&K+2:&K+&M+2];sigma2=Pa[&K+&M+3];gama=Pa[&K+&M+4]; 

sigmau=gama*sigma2;  

sigmav=sigma2*(1-gama); 

param=beta`||delta`||sigmau||sigmav||gama; 

create paramet from param; 

append from param; 

close paramet; 

create parameters from param; 

append from param; 

close parameters; 

 

use &dsn var  _all_; 

read all var  _num_ into Da; 

id=Da[,1]; 

yy=Da[,2]; 

nob=nrow(yy); 

xx = j(nob,1); 

do i=1 to &K; 

 xx = xx||Da[,i+2]; 

end; 

zz = j(nob,1); 

do i=1 to &M; 

 zz = zz||Da[,i+&K+2]; 

end; 

 

te = j(nob,1,0.); 
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do i = 1 to nob; 

 zd=zz[i,]*delta; 

 xb=xx[i,]*beta; 

 us = (1-gama)*zd-gama*(yy[i]-xb); 

 ss = (gama*(1-gama)*sigma2)**0.5; 

 ds=us/ss; 

 te[i] = exp(-us+0.5*ss**2)*probnorm(ds-ss)/probnorm(ds); 

end; 

tei=id||te; 

create efficiency from tei; 

append from tei; 

close efficiency; 

quit; 

 

/*Repeatedly create pseudo-data and use them to maximize the log-likelihood*/ 

 

%do i=1 %to &B; 

 proc iml; 

 /*Create pseudo data*/ 

 use paramet var  _all_; 

 read all var  _num_  into Par; 

 beta=Par[1:&K+1];  

 delta=Par[&K+2:&K+&M+2]; sigmau=Par[&K+&M+3]; sigmav=par[&K+&M+4]; 

 gama=par[&K+&M+5]; 

 use &dsn var  _all_; 

 read all var  _num_ into Da; 

 id=Da[,1]; 

 yy=Da[,2]; 

 nob=nrow(yy); 

 xx = j(nob,1); 

 do i=1 to &K; 

  xx = xx||Da[,i+2]; 

 end; 

 zz = j(nob,1); 

 do i=1 to &M; 

  zz = zz||Da[,i+&K+2]; 

 end; 

 v=j(nob,1,0.); 

 u=j(nob,1,0.); 

 yys=j(nob,1,0.); 

 do i =1 to nob; 

  seed=-i; 

  v[i]=(sqrt(sigmav))*rannor(seed); 

  u[i]=zz[i,]*delta+(sqrt(sigmau))*rannor(seed); 

   do while (u[i]<0); 

    u[i]=zz[i,]*delta+(sqrt(sigmau))*rannor(seed); 

   end; 

  yys[i]=xx[i,]*beta+v[i]-u[i]; 

 end; 

 pseudo=id||yys||xx[,2:&K+1]||zz[,2:&M+1]; 

 create pdata from pseudo; 

 append from pseudo; 

 close pdata; 

 quit; 

 

 /*Use pseudo-data to maximize the likelihood*/  

 %Maximize(dsn=pdata,K=&K,M=&M); 

 

 /*Save parameters Boostrap estimates*/ 

 proc iml; 

 use opt var  _all_; 

 read all var _num_ into Pab; 

 beta=Pab[1:&K+1]; delta=Pab[(&K+2):&K+&M+2];      

 gama=Pab[&K+&M+4];sigma2=Pab[&K+&M+3]; 

 sigmau=gama*sigma2;  

 sigmav=sigma2*(1-gama); 

 par=beta`||delta`||sigmau|| sigmav|| gama; 

 edit parameters; 

 append from par;  

 run; 
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 /*Compute and save technical efficiencies Bootstrap estimates*/ 

 use &dsn var  _all_; 

 read all var  _num_ into Da; 

 id=Da[,1]; 

 yy=Da[,2]; 

 nob=nrow(yy); 

 xx = j(nob,1); 

 do i=1 to &K; 

  xx = xx||Da[,i+2]; 

 end; 

 zz = j(nob,1); 

 do i=1 to &M; 

  zz = zz||Da[,i+&K+2]; 

 end; 

 te = j(nob,1,0.); 

 do i = 1 to nob; 

  zd=zz[i,]*delta; 

  xb=xx[i,]*beta; 

  us = (1-gama)*zd-gama*(yy[i]-xb); 

  ss = (gama*(1-gama)*sigma2)**0.5; 

  ds=us/ss; 

  te[i] = exp(-us+0.5*ss**2)*probnorm(ds-ss)/probnorm(ds); 

 end; 

 ty = id||te; 

 edit efficiency; 

 append from ty; 

 close efficiency; 

 quit; 

%end; 

 

 

%mend; 

 

 

Computing SAS/IML point estimates, 2.5 percentiles and 97.5 percentiles of firm-

specific technical efficiency 

 
proc sort data=efficiency; 

by Col1; 

run; 

proc univariate data=efficiency noprint; 

by col1; 

var col2; 

output out=outind mean=M pctlpts=2.5 97.5 pctlpre=P; 

run; 

 

 

Computing Horrace and Schmidt (1995) 2.5 percentiles and 97.5 percentiles of firm-

specific technical efficiency 

 
 

%Maximize(dsn=data3601,id=id,yy=yy,ones=ones,x1=x1,x2=x2,z1=z1,z2=z2,z3=z3); 

proc iml; 

use opt; 

read all var{b0 b1 b2 d0 d1 d2 d3 sigma2 gama}; 

sigmau=gama*sigma2;  

sigmav=sigma2*(1-gama); 

use data3601; 

read all var{id yy ones x1 x2 z1 z2 z3}; 

xx = ones || x1 || x2; 

zz = ones || z1 || z2 || z3 || z4|| z5 || z6|| z7; 

beta = b0||b1||b2; 

delta= d0||d1||d2||d3; 
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nob = nrow(yy); 

lb=j(nob,1,0.); 

ub=j(nob,1,0.); 

te = j(nob,1,0.); 

do i = 1 to nob; 

e= yy[i]- xx[i,]*beta`; 

mu = (1-gama)*zz[i,]*delta`-gama*e; 

ss = gama*(1-gama)*sigma2; 

te[i] = exp(-mu+0.5*ss)*probnorm(mu/sqrt(ss)-sqrt(ss))/probnorm(mu/sqrt(ss)); 

lb[i]=exp(-mu-sqrt(ss)*probit(1-0.025*probnorm(mu/sqrt(ss)))); 

ub[i]=exp(-mu-sqrt(ss)*probit(1-0.975*probnorm(mu/sqrt(ss)))); 

end; 

create heffic var {id te lb ub}; 

append; 

close heffic; 

quit; 
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Table 1. Parameter estimates from SAS/IML program  

Variables Coefficient Mean  Std. deviation 2.5% 

percentile 

97.5% 

percentile 

Constant 
0

β  7.494 0.331 6.831 8.123 

Log Labor 
1

β  0.307 0.020 0.349 0.476 

Log Selling space 
2

β  0.408 0.031 0.270 0.342 

Constant 
0

δ  0.655 0.121 0.408 0.885 

Chain 
1

δ  -0.786 0.477 -1.306 -0.483 

Pharmacy 
3

δ  -0.446 0.197 -0.936 -0.183 

Liquor 
4

δ  0.113 0.091 -0.055 0.297 

 2

u
σ  0.095 0.030 0.047 0.161 

 2

v
σ  0.069 0.011 0.046 0.089 

 γ  0.568 0.101 0.364 0.731 
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Table 2. Parameter estimates from FRONTIER, STATA, and SAS/IML 

  FRONTIER/STATA SAS/IML 

Variables  Mean Std.  

deviation 

Mean  Std. 

deviation 

Constant 
0

β  7.524 0.338 7.494 0.331 

Log Labor 
1

β  0.305 0.022 0.307 0.020 

Log Selling space 
2

β  0.406 0.032 0.408 0.031 

Constant 
0

δ  0.684 0.096 0.655 0.121 

Chain 
1

δ  -0.729 0.150 -0.786 0.477 

Pharmacy 
3

δ  -0.408 0.131 -0.446 0.197 

Liquor 
4

δ  0.104 0.085 0.113 0.091 

 2

u
σ  0.098 0.028 0.095 0.030 

 2

v
σ  0.070 0.009 0.069 0.011 

 γ  0.583 0.087 0.568 0.101 
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Figure 1. SAS/IML Technical efficiency scores 
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Figure 2. Technical efficiency scores using Horrace and Schmidt (1996) formulas 
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