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Abstract
This paper evaluates how gasoline prices influences the average fuel econ-

omy of the existing automobile fleet. Higher fuel price affects fleet composi-
tion in two ways: immediate purchase decisions of new, more fuel efficient,
vehicles and scrappage of old fuel inefficient gas-guzzlers. Gasoline costs ac-
count for 65% of the total operating costs of driving an automobile. Rational
forward-looking consumers will account for both current and expected future
gasoline prices to decide not only what vehicle to purchase but also when to
purchase it. Scrappage of old cars will also be driven by the same considera-
tions, plus their increasing maintenance cost, and improved features of new
models. In order to account for all these dynamic effects on the composition
of the automobile fleet I specify and estimate a structural dynamic model
of consumer demand for new and used vehicles as in Gowrisankaran and
Rysman (2009). However, my model not only predicts the market shares of
each vehicle sold in every period but also the survival probability for each
model-vintage for each sample period. I estimate the model using a rich
dataset combining vehicle registration and current fleet composition of sev-
eral cities between 2003 and 2009 that include vehicle characteristics, price,
gasoline price, and demographics for all market-years. Parameters are esti-
mated by matching the predicted market shares and survival rates of every
model-vintage with the corresponding empirical moments over the time span
of the sample. Parameter estimates are then used to evaluate substantial fuel
tax increases that have never been implemented before for being considered
controversial and/or politically risky. Preliminary results for the Houston
and San Francisco markets indicate that a permanent increase of gasoline
price to $4 per gallon has stronger (and stable) long term effects than just
doubling the current gasoline tax, which leads only to a temporary increase
of the average fuel economy of the automobile fleet.

Keywords: Dynamic Demand Estimation, Gasoline Tax, Automobile
Fuel Efficiency
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1 Introduction

In the United States, automobiles (passenger cars and light trucks) account

for 60% of transportation energy use. Their dominance has made them a

focus of efforts to improve fuel efficiency. Moreover, consumer’s automobile

demand is inherently dynamic. Unlike other durable goods, not all costs of

vehicles will occur at the time of purchase, as gasoline and maintenance are

needed to operate vehicles. In fact, gasoline is the most important ongoing

expense during a vehicle’s life-time use, accounting for over 65% of total

operating costs.1 A rational forward-looking consumer will take into account

not only current but also future gasoline prices when facing the choice of

purchasing a vehicle. With an anticipation of sky-rocketing gasoline prices

in the future, consumers may want to switch to a more fuel efficient vehicle

(for example, a Toyota Prius) by buying a new vehicle now and/or speeding

the scrappage of old, inefficient gas guzzles. On the contrary, historically

low gasoline prices may build an expectation of consistent low prices for

consumers and lead to a surge in SUV and light truck sales.

Furthermore, the replacement decision of vehicles introduces another dy-

namic element of demand. As time goes by, consumers are not only con-

fronted with an increasing cost of maintenance and depreciation of their

vehicles as they age, but also with the choice of purchasing new and increas-

ingly more efficient vehicles. New features of future vehicles, the optimal

timing of scrapping old ones and the expectations on future gasoline prices

determine the market shares of new vehicles sold and the compositions of the

existing fleets of vehicles.

Estimation of consumer’s dynamic demand for durable goods is difficult.

Most empirical models of demand for durable goods have concentrated on the

market for new products under a static setting. Berry, Levinshon and Pakes

(1995), henceforth BLP, focuses on accommodating multiple dimensions of

12009 Your Driving Costs, AAA Association Communication
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consumer heterogeneity in modelling the differentiated product demand for

automobiles. However, BLP ignores the durability of products and empha-

sizes demand for new vehicle only. Esteban and Shum (2007) estimate a

model of second-hand automobile market with forward-looking consumers

and firms. They use a simple vertical model where consumers must purchase

a car every period. However, their paper did not consider the scrappage

and replacement decisions of consumer, which is also an essential part of

consumer’s vehicle decisions. Rust(1987) formulate a regenerative optimal

stopping model of bus engine replacement through a solution to a stochastic

dynamic programming problem. The paper proposes a “nested fixed point”

algorithm for estimating dynamic programming models of discrete choice.

Melnikov (2001) analyzes the dynamics of consumer choice for discrete choice

differentiated products markets with durable goods using data on computer

printers and a logit utility specification. But heterogeneity of consumer are

only captured by a i.i.d random term and consumers purchase only once in

their lifetime.

Recent developments have allowed economists to address the timing of

consumer purchase, as in Gowrisankaran and Rysman (2009). This paper

estimates a dynamic model of consumer preferences for new durable goods

with persistent heterogeneous consumer tastes, rational expectations about

future products and repeat purchases over time using data from digital cam-

corder market. They predict market shares of each product in each period in

an industry where prices drop very quickly and product qualities improves

significantly over years so that repeated purchases are likely.

In this paper, I specify and estimate a dynamic discrete choice model of

consumer demand for automobiles. Heterogeneous consumers decide whether

to keep or scrap a car, whether to purchase a new car and which car to own

from a set of new car models in the market conditional on purchase. By

taking the dynamic elements of demand into consideration, I am able to

capture the dynamic nature of a forward-looking consumer’s decision, with
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rational expectation on the evolution of vehicle attributes and retail gasoline

prices. I estimate the model separately for each market (city) using a rich

dataset combining vehicle registration and current fleet composition data of

several cities between 2003 and 2009.

Contrary to the camcorder industry studied in Gowrisankaran and Rys-

man (2009), prices of automobiles do not drop as quickly as that for digital

camcorders. Their characteristics do not improve as fast as camcorders nei-

ther. Since estimation in this paper makes use of a seven-year sample of new

and used vehicle registration data, it is reasonable to assume that repeated

purchase are not going to be frequent. Instead, my model is built based

on a similar framework but distinguished from Gowrisankaran and Rysman

(2009) by taking into consideration of consumer’s dynamic scrappage deci-

sions due to vehicle depreciation and gasoline price dynamics. In addition

to the market shares of new vehicles in each year of the sample, as predicted

by the model of Gowrisankaran and Rysman (2009), my model also predicts

the survival probabilities of each vehicle model-vintage for each year. There-

fore, parameters of my model are estimated by matching both set of these

predicted shares with the corresponding empirical moments over time.

The parameter estimates from above models are then used to evaluate

substantial fuel tax increases that have never been implemented before be-

cause they could be considered controversial and/or politically risky. In the

United Sates, gasoline taxes vary slightly across states, although the mean

total taxes only amount to 47.7 cents per gallon (including federal, state and

local tax). Among all industrial countries, the United States has the lowest

gasoline taxes, while on the contrary, Germany’s tax of $4.86 per gallon is

the highest. In addition, there are few changes of federal gas taxes ever since

it is first established in 1933. The tax rate has reached the current level of

18.4 cents per gallon through a series of incremental increases and remained

unchanged since 1993.

Figure 1 illustrates how average fuel efficiency of passenger cars and light
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Figure 1: Gasoline Prices and Average Fuel Efficiency in the US, 1980-2008

trucks on road (measured by MPG) evolves in the United States, from 1980

to 2008, along with nominal and real gasoline prices changes. Average MPG

for both passenger cars and light trucks both increase from 1980-1990 even

when the real gasoline prices is falling during that period. However, in spite

of the increased share of sport utility vehicles and light trucks as a percentage

of new passenger vehicle sales, average fuel economy is virtually unchanged

as gasoline price keep going down between 1990 and 2000. It finally starts

to climb up slightly as consumers face the increasing gasoline prices after

2000. One might wonder what will happen to the average fuel efficiency if

we could keep a high tax thus a high gasoline price today. With the updating

automobile fleets on the market and the changing consumer preferences over

the year, it is difficult to study the effects by a reduced form study of historical

data. Therefore, a dynamic structural model of consumer choices would be

crucial to correctly evaluate policies aimed at increasing fuel efficiency.
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Several studies have examined the impact of gasoline taxes on consumer’s

vehicle choices. Following Dubin and McFadden (1984), Goldberg (1998) and

West (2004) studied the joint determination of vehicle choice and gasoline

consumption. Bento et al (2008) examined the impacts of increased U.S.

gasoline taxes with a model that links the markets for new, used and scrapped

vehicles. Li, Haefen and Timmins (2008) examined the effects of gasoline

prices on the automobile fleet’s composition and found that high gasoline

prices shift new purchase towards more fuel-efficiency vehicles and speeding

scrappage of less-fuel-efficient used vehicles. Linn and Klier (2007) estimate

the effect of a gasoline tax on fuel efficiency of new vehicle purchase, using

high frequency sales data. Other studies focus on the impact of policies on

new car production and the associated fuel efficiency economy. Goldberg

(1998) and Kleit (2004) analyze tighter CAFE standards, while Austin and

Dinan (2005) examine CAFE standards and a gasoline tax increase.

However, none of these papers take the dynamic nature of consumer’s

choice into consideration when they estimated the model and evaluated pol-

icy influences. Since different policies have distinct long-run and short run

effects, considering a dynamic model is necessary to capture those effects

when assessing and comparing policies aimed at improving overall market

fuel efficiency.

Compared to the prior works, this paper contributes to the literature by

presenting a new and efficiency way to address these issues. Comparisons be-

tween my preliminary findings from dynamic demand estimation and results

from a static model indicate that the effects of gasoline prices on consumer’s

vehicle choices are underestimated in a static model. The parameter esti-

mates are then used to evaluate substantial fuel tax increases: the impact

of the increase in fuel tax changes over time as the fleet to be replaced is

increasingly more efficient as old clunkers get scrapped first. My prelim-

inary results suggest that doubling the current tax rate would result in a

decreasing trend of the increase of a city’s fleet fuel efficiency after a mild

5



initial impact: an immediate increase of 0.29 MPG, raising up to 1.01 MPG

fades out to 0.34 MPG after seven years. Alternatively, a variable tax policy

aimed at keeping the price of gasoline stable at $4 per gallon will increase

fuel efficiency dramatically to 1.86 MPG in the first several years, remaining

mostly stable thereafter, with an increased fuel efficiency of still 1.65 MPG

after seven years.

The rest of this paper is organized as following. Section 2 discusses a

dynamic model of consumer choices and estimation strategies. Section 3

provides description of data we used in this estimation. Section 4 presents

the estimation results from the model and the effects of different tax increase

policies based on model simulations. Section 5 concludes.

2 Model And Inference

2.1 Basic Model

Suppose there is a continuum of heterogeneous potential consumers indexed

by i in the market. Consumers have infinite horizons and maximize their

expected lifetime utility with a common discount factor β.

At the beginning of period t, consumer i may or may not own a car. If

he does not have a car, then his decision is whether or not to buy a new

car. If consumer i decide to buy a new car at time t, he chooses one among

Jt products (Honda Civic, Ford Focus, and so on) in period t. If he owns

a car k at time t, he then decide whether to keep the car or scrap the car.

If he scraps the car, he can choose to buy a new one among Jt products in

period t or choose not to purchase at the current period (e.g. use public

transportation instead). In either case, he faces a similar problem at time

t+1. In this analysis, consumer’s decisions of car purchase and replacement

mainly depend on current and expected future gasoline prices, which are

major components of operation costs. In addition, consumers need to decide

whether to replace the vehicle in the current period or later, after comparing
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the improved features of new models with the depreciation and increasing

maintenance cost of the currently owned automobile. Since I do not have

vehicle resale data, I assume that there is no resale market.

The indirect utility of consumer i from purchasing product j at time t is:

uijt = αx
i xjt + ξjt − αp

i pjt − αg
i (

pgt
MPGjt

) + εijt (1)

Here xjt is the observed product characteristics of vehicle model j at time

t, such as horsepower, vehicle size, weight, and so on. ξjt is the product char-

acteristics of product j at time t that cannot be observed by econometricians

and pjt is the price of product j at time t. pgt is the retail gasoline price

at time t, MPGjt is mileage per gallon of vehicle j at time t. Thus
pgt

MPGjt

is operating costs of owning a car, which is measured by driving costs per

mile. εijt is mean-zero stochastic term with i.i.d. Type I extreme value dis-

tribution. Finally, the individual-specific random coefficients (αx
i , α

p
i , α

g
i ) are

supposed to be constant overtime and normally distributed:




αx
i

αp
i

αg
i


 =




αx

αp

αg


+ Σvi, (2)

where (αx, αp, αg) are mean coefficients and vi ∼ Pv(v) is unobserved con-

sumer preferences.

Then the gross flow utility that each consumer obtains based on his pur-

chase or the car k he already owns at period t is:




δfikt = αx

i xkt − αg
i (

pgt
MPGkt

)− αp
i depkt + ξkt if k 6= 0

δfikt = 0 if k = 0
(3)

Here, depkt is the depreciation costs of owning vehicle k at time t and depkt is

assumed to be zero if it is a new car purchase. I will discuss the depreciation
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cost later in this section.

Then the utility for consumer i who owns vehicle k at time t could be

written as following:

ũikt = δfikt + εikt (4)

I also define the population mean flow utility as:

δ̄fikt = αxxkt − αg(
pgt

MPGkt
)− αpdepkt + ξkt (5)

A consumer who does not own a car at time t has a net flow utility of

ui0t = δfi0t + εi0t (6)

where δfi0t is the flow utility from the outside good, such as walking to work

or using public transportations. Since the mean utility from outside goods

is normalized to zero in this model, I assume δfi0t equals to zero for those

individuals.

Before evaluating consumer’s choice decision at time t, I need to formulate

consumer’s expectations of prices and qualities thus the utility he would

obtain from future products, as well as expectations of future gasoline prices

at time t. I assume at time t, consumer i has no information about future

values of the idiosyncratic unobservable shocks ε. Also, although consumer

i is uncertain about future values of product characteristics and gasoline

prices, he has rational expectations of their evolutions over time.

Let Ωt denote all information about current and future product attributes

available to consumer i at time t (e.g. xjt, pjt and ξjt ∀j, t) and let εit ≡

(εi0t, ..., εiJt) be consumer i’s idiosyncratic utility components at time t. Then

I can define that consumer i at time t makes scrappage or purchase decisions

based on the state space S = (εit, δ
f
ikt,Ωt, p

g
t , ), where δ

f
ikt is consumer’s gross

utility flow from current endowment of vehicles holding k at time t, k = 0

if he does not has a car in current period and pgt is gasoline price at time
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t. Assume Ωt, p
g
t and δfiktevolves according to some homogeneous first-order

Markov process: P1(Ωt+1|Ωt), P2(p
g
t+1|p

g
t ) and P3(δ

f
ik,t+1|δ

f
ikt) .

2.2 Consumer’s Dynamic Optimization Problem

In each period, the consumer is uncertain about gasoline prices, future prod-

uct attributes and vehicle depreciation, but possess rational expectation

of their evolutions. Consumer i’s decision is to decide whether to keep

his existing vehicle (if any) or to purchase one of the new products. Let

Vi(εit, δ
f
ikt,Ωt, p

g
t ) denote the value function, I can now define the Bellman

equations for consumer i.

If consumer i does not own a car at time t (k = 0):

Vi(εit, δ
f
i0t,Ωt, p

g
t ) = max




ui0t + βE[Vi(εit+1, δ

f
i0,t+1,Ωt+1, p

g
t+1)|Ωt, p

g
t ],

max
j=1,...,Jt

uijt + βE[Vi(εit+1, δ
f
ij,t+1,Ωt+1, p

g
t+1)|Ωt, p

g
t ]

(7)

If consumer i owns a car at time t (k 6= 0):

Vi(εit, δ
f
ikt,Ωt, p

g
t ) = max





ũikt + βE[Vi(εit+1, δ
f
ik,t+1,Ωt+1, p

g
t+1)|Ωt, p

g
t ],

max
j=1,...,Jt

uijt + βE[Vi(εit+1, δ
f
ij,t+1,Ωt+1, p

g
t+1)|Ωt, p

g
t ],

ui0t + βE[Vi(εit+1, δ
f
i0,t+1,Ωt+1, p

g
t+1)|Ωt, p

g
t ]

(8)

The main issue in solving the consumer’s dynamic programming problem

here is the “curse of dimensionality” of the state space. Following the existing

literature, I make some assumptions to simplify this problem. Following Rust

(1987), I define

EVi(δ
f
ikt,Ωt, p

g
t ) =

∫

εit

Vi(εit, δ
f
ikt,Ωt, p

g
t )dPε (9)
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By integrating over realization of εit, expectation of value function EVi is

not a function of εit, and the choice probabilities will not require integration

over unknown function EVi. Since εijt is assumed to be i.i.d. Type I extreme

value distributed, the conditional independence assumption from Rust (1987)

is satisfied. Now EVi is a fixed point of a separate contraction mapping on

the reduced state space S ′ = (δfikt,Ωt, p
g
t )

Since Ω in the state space S contains all information about current and

future product attributes available to consumer at time t, the large dimen-

sionality makes it difficult to compute the Bellman equations in (7) and (8).

To solve the dimensionality problem, I further make some simplifications and

introduce the logit inclusive value. For j = 1, ..., J , define

δijt(Ωt, p
g
t ) = δfijt − αp

i pjt + βE[EVi(δ
f
ij,t+1,Ωt+1, p

g
t+1|Ωt, p

g
t )] (10)

Therefore, δijt is the expected discounted utility for consumer i purchasing

product j at time t. Then the logit inclusive value for consumer i at time t

is

δit = ln

(
∑

j=1,...,Jt

exp(δijt(Ωt, p
g
t ))

)
(11)

The logit inclusive value simplifies the consumer’s utility of choosing j

from the entire set of Jt to receiving product with mean utility δit and a

random draw from extreme value distribution.

EVi(δ
f
ikt,Ωt, p

g
t ) = EVi(δ

f
ikt, δit, E[δi,t+1, δit+2, ...|Ωt, p

g
t ], p

g
t ) (12)

Now consumer’s dynamic decision in each period can be interpreted as

following. Based on his current flow utility and expectation of future gasoline

prices and product attributes, he first decide whether to replace the car (if

any) this period by simply comparing the logit inclusive value to the outside

option (not buying a car or not replacing the current car). Then he can make

the optimal choice of a new vehicle among all available products if he decides

10



to buy.

Further, I assume that,

If δit(Ωt, p
g
t ) = δit(Ω

′

t, p
g
t ), P (δit+1|Ωt, p

g
t ) = P (δit+1|Ω

′

t, p
g
t ) (13)

This assumption implies that, given the same gasoline prices, if at period

t the logit inclusive value δit is the same for two states, then the evolution

for future logit inclusive value will be the same. Then the evolution of logit

inclusive value can be assumed to follow the stochastic process:

P (δit+1|δit) (14)

With this assumption, the evolution of the logit inclusive value δit only de-

pends on its own last period value. Similarly, the evolution of gasoline prices

is assumed to depends only on its own last period value and follow the fol-

lowing stochastic process:

P (pgt+1|p
g
t ) (15)

Depreciation is usually the greatest expense incurred by drivers during

their ownership period. As the automobile ages, the required maintenance

costs and probability of failure both increase, thus the consumer tends to

receive less utility flow from owning vehicle k in period t+ 1 than in period

t due to depreciation. To capture this, I form consumer’s expectation on the

evolution of expected values of keeping the currently owned vehicle, where

the depreciation cost is expressed through its declining resale values as a per-

centage of its original price. Another way to capture depreciation is simply

thorough the vehicle age. Since different vehicle models have significantly

different abilities of retaining their values, I use resale values for better pre-

ciseness. For example, a Toyota Camry Sedan can retain 65% of its retail

price for the second year and 38% for the fifth year, way above Kia Optimal
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LX Sedan, with 36% and 18%.2 Let Dep = pkt − βE[pk,t+1|δ
f
ikt, p

g
t+1]. This

is the difference between period t’s resale value and expected period resale

value in t + 1, which depends on vehicle k’s own characteristics and retail

gasoline prices. I approximate this value as a fraction of vehicle’s original

price, i.e., Depkt = λktP
origin
k . Assume consumer’s expected utility δfikt from

owning vehicle k evolves according to the following stochastic process:

P (δfik,t+1|δ
f
ikt) (16)

In order to solve the dynamic decision problem, I need to further spec-

ify consumer’s expectations. The process are modeled independently and I

assume a simple and computable linear specification for each of them:

δi,t+1 = γ1i + γ2iδit + uit (17)

δfik,t+1 = µ1i + µ2iδ
f
ikt + υit (18)

pgt+1 = κ1i + κ2ip
g
t + ηit (19)

where γ, µ, κ are incidental parameters and uit, υit, ηit are normally distributed

with mean 0. These equations can be estimated through linear regressions.

Using the simplifying assumptions I made above, I am now able to reduce

the state space from many dimensions to three dimensions:

EVi(δ
f
ikt, δit, E[δi,t+1, δi,t+2, ...|Ωt, p

g
t ], p

g
t ) = EVi(δ

f
ikt, δit, p

g
t ) (20)

where δfikt is the flow utility from current endowment k at time t, δit is logit

inclusive value (mean utility level) of all products available at time t and pgt

is the gasoline price at time t.

Now I can write the expectation of the Bellman equation as:

2Resale Value from Kelly Blue Book
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If consumer i does not own a car at time t (k = 0):

EVi(δ
f
i0t, δit, p

g
t ) = ln

(
exp(δit) + exp

(
δfi0t + βE

[
EVi(δ

f
i0,t+1, δi,t+1, p

g
t+1)|δit, p

g
t

]))

(21)

If consumer i owns a car at time t (k 6= 0):

EVi(δ
f
ikt, δit, p

g
t ) = ln(exp

(
δfikt + βE

[
EVi(δ

f
ik,t+1, δi,t+1, p

g
t+1)|δit, p

g
t

])
+ exp (δit)

+ exp
(
δfi0t + βE

[
EVi(δ

f
i0,t+1, δi,t+1, p

g
t+1)|δit, p

g
t

])
) (22)

The aggregate demand for each vehicle can now be characterized in a

straightforward manner. With the standard extreme value assumption, for

a consumer i with vehicle k (k = 0 or k 6= 0), the probability of purchasing

a certain product j conditional on purchase is:

Prijt =
exp(δijt)

exp(EVi(δ
f
ijt, δit, p

g
t ))

(23)

For a consumer i who owns a car (k 6= 0) at time t, the probability that

consumer i keeps the current vehicle is :

P̃ rikt =
exp

(
δfikt + βE

[
EVi(δ

f
ik,t+1, δi,t+1, p

g
t+1)|δit, p

g
t

])

exp(EVi(δ
f
ikt, δit, p

g
t ))

Now the market share of each vehicle model j purchased at period t and

the market share for each vehicle holdings could be calculated by integrating

the probabilities Prijt and P̃ rikt over consumer preferences:

sNjt =

∫

vi

∑

k∈Jt−1∪0

Prijt s̃ik,t−1 dPv(v) (24)

s̃kt =

∫

vi

P̃ rikt s̃ik,t−1 dPv(v) (25)

13



Now I have recovered the explicit expressions of market shares for new

car sales sNjt and existing used car holdings s̃kt, which could be observed in

our vehicle registration data.

2.3 Inference

The estimation strategies are built on Gowrisankaran and Rysman (2009):

combining BLP and Rust (1987)’s nested fixed point algorithm to estimate

parameters of the model. The outer loop is a non-linear search over param-

eters (α,Σ) of the model; the middle loop is a fixed point calculation of the

population mean flow utilities δ̄fikt and the inner loop is calculation of pre-

dicted market shares, based on consumer’s dynamic optimization decisions.

I now briefly describe some details of the three levels of optimization.

Instead of trying to estimate the discount factor β in the dynamic model,

I set β = 0.9.3

The inner loop computes the predicted market share as a function of δ̄fkt
for and necessary parameters by solving the consumer dynamic program-

ming problem for a number of simulated consumers and then integrating

across consumer types. Following literature, the predicted market shares

were obtained through simulation since there’s no closed form solution for

(24) and (25).

The middle loop, I recovered the population mean flow utility δ̄fkt using

the contraction mapping developed by BLP. In particular, I use an iterative

routine that update the mean flow utility until convergence as follows:

δ̄f,nkt = δ̄f,okt + ψ(ln(s̃kt)− ln(ˆ̃skt(δ̄
f,o
kt , α,Σ))) (26)

where ˆ̃skt(δ̄
f,o
kt , α,Σ) is the predicted market share calculated from inner loop,

s̃kt is the actual market share from data, δ̄f,nkt is the current and δ̄f,okt is the

3Since the computing time may varies substantially with different value of β, the actual
value of β used in the estimation is subject to change.
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previous iteration flow utility value and ψ is a tuning parameter that usually

set to 1 − β. Conditional on the vector of parameters, I iteratively updated

the logit inclusive value, the value functions, the Markov process until fully

convergence.

In the outer loop, I specify a GMM criterion function:

G(α,Σ) = Z ′ξ(α,Σ) (27)

where ξ(α,Σ) = δ̄fimωt − αxxωt + αg(
pgmt

MPGωt
) + αpdepωt is the unobserved

product characteristics from (5) and Z is a matrix of exogenous variables,

which I will describe in details later. Then the estimated parameters (α,Σ)

should solve:

min
α,Σ

G(α,Σ)′WG(α,Σ) (28)

I solve this minimization problem by a non-linear search over (α,Σ). In addi-

tion, I obtain consistent estimates of (α,Σ) through a two-stage estimation.

In the first stage, assuming homoscedastic errors, I let W1 = Z ′Z and get

estimates for (α,Σ). Then I use the first stage estimates to approximate the

optimal weight matrix and perform the second estimation for parameters.

The key identifying assumption in this estimation is the population mo-

ment condition E[Z ′ξ(α,Σ)] = 0, which requires a set of exogenous instru-

mental variables. Following BLP, I allow vehicle price to be endogenous to

the unobservable ξjt, and assume that product characteristics are exogenous.

I use all product characteristics, the mean product characteristics of vehi-

cle model from the same producer at the same period, the mean product

characteristics for all models at the same period. These instruments are all

common in the literature.
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3 Data

The empirical analysis of this paper relies on several types of dataset com-

bined together: the annual vehicle registration data for Houston and San

Francisco from R.L.Polk & Company; automobile characteristics fromWard’s

Automotive Year Book; retail gasoline prices of the two cities from Energy

Information Administration, and vehicle fuel economy efficiency data from

Environmental Protection Agency. By merging all those dataset together, I

have obtained a very rich dataset which allows me to identify the model and

to do policy comparison simulations.

The main dataset I used contains vehicle registration data for Houston

and San Francisco. The data was purchased from R.L.Polk & Company and

it include registration records for both new and used vehicles from 2003 to

2009. The new vehicle registrations are collected at model level by Model

year/Make/Model in each city (e.g. how many 2003 Honda Civic were pur-

chased in Houston in 2003) thus I could keep track of new car sales each year.

The used car registration data for all vehicle stocks at model level in each city

are also included in the data thus I could observe the evolution of the fleet

composition at model level over the seven years. Since vehicle registration is

required once every year, all registration data above are in year level.

I also supplement the registration data with vehicle characteristics data.

This information is from the annual Ward’s Automotive Yearbooks (2003-

2009), which provide most of the vehicle characteristics used in this analysis

by make, model and year. The data include wheelbase, length, width, height,

curb weight, engine size, horsepower, retail prices, and so on. Price data is

based on list prices, which is subject to some measurement errors given that

most transactions in the US car market are negotiable. In this estimation,

all prices are in 2003 dollars. (I use the Consumer Price Index to deflate.)

The vehicle fuel efficiency data are from the Environmental Protection

Agency (EPA), measured by a weighted average of city(55%) and highway

16



Figure 2: Kernel Density Estimation of Fuel Economy Distribution

(45%) mileage per gallon (MPG).4 The average MPG for all vehicle models

shown in our sample is 21.71, with a standard deviation of 4.93. Figure 2

graphs the kernel density estimates of fuel economy distribution for all vehicle

models sold in the U.S. in year 1985, 2000, 2005 and 2007. Surprisingly, the

fuel efficiency, which is measured by MPG, was declining from 2000 to 2007 in

general since the probability density function was shifting leftward towards

lower MPG. This can be largely explained by increasing sales and market

expansion of SUVs and light trucks in recent years.

Table 3 provides summary descriptive statistics of variables used in this

analysis. On average, horsepower to weight ratio for all vehicle models on

the market is 0.13, while the mean size for vehicles, which is measured by

length × width, is 13740. The average MPG is 21.71 for all models with a

driving cost of 12 cents per mile. For every one hundred models, 53 of them

are passenger cars and 40 of them are SUVs, while only 7 are trucks.

The retail gasoline prices in each city are from Energy Information Ad-

ministration. There is substantial periodical and regional variation in retail

gasoline prices: Houston experienced the lowest annual average price of $1.8

4Mileage per gallon here is computed as: MPG = 1
(0.55/City MPG+0.45/Hwy MPG )
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Figure 3: Gasoline Prices in Selected U.S. Cities

per gallon while the highest appeared in San Francisco in 2008, with $ 3.82

per gallon. Figure 3 gives a clearer illustration by comparing gasoline prices

in Houston, San Francisco, Cleveland and Miami during the sample periods,

2003-2009. In general, there is an upward trend for retail gasoline prices

across the whole country except for the sharp drop in late 2008 due to the

decline of world demand. The price variation across time will help us better

identify the model.

Figure 4 plots how average mileage per gallon in Houston moves with

gasoline prices from 2003 to 2009, on a yearly basis. The weighted average

MPG for new car sales soars as the gasoline prices increase since 2003. How-

ever, it started to drop long before the gasoline price peaks in 2008. For car

stocks in Houston, the fuel efficiency kept decreasing due to the prevailing

consumer preference for SUV and trucks. But the rate of decreasing drops

as gasoline prices increase over year. These findings provide an illustrative

demonstration on how gasoline price affect a city’s average MPG over year.

Combining registration information of each city with vehicle characteris-
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Figure 4: Gasoline Prices and Average MPG in Houston, 2003-2009

Variable Mean Std. Err

HP 222.35 76.60
Weight 3740.00 808.05
HP/Weight 0.13 2.01
SIZE (Length × Width×10−3) 13.74 1.64
MPG 21.71 4.93
Fuel Cost ($) 0.12 0.04
Passenger Car 0.53 0.50
SUV 0.40 0.49
Truck 0.07 0.26
Price ($) 36211.24 40713.48

Table 1: Statistics of Vehicle Characteristic, 2003-2009
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tics data, I can now recover the weighted fuel efficiency and weighted fleet

composition in each city across years. Table 3 shows a sample characteristics

for Houston and San Francisco for comparison. For fleet composition in two

cities, the weighted average fuel efficiency of new car sales is 22.45 miles per

gallon in Houston, which is much lower than that of 25.79 miles per gallon in

San Francisco. Here is an important difference between the two markets over

years, which could be explained by the following fleet composition compari-

son. For new car sales, 61% of all vehicles sold in San Francisco are passenger

cars, which are usually more fuel efficient. However, only 45% of new vehicle

purchase in Houston are passenger cars. Specifically, consumers in Houston

show an remarkable passion of trucks: over 20% of new car sales in Houston

is trucks, while only 7% in San Francisco. The fleet composition of vehicle

stocks is also quite similar to new car sales in two cities, as demonstrated in

the Table.

In order to capture the depreciation costs of owning vehicles, I use resale

values of vehicles. This information was collected from Resale Value of Kelly

Blue Book. Resale value is a projection based on the current market, his-

torical trends, market conditions for the vehicle, competition in the segment

and expectations of the future economy. It is typically represented as a per-

centage of a vehicle’s original MSRP and is used for estimating the vehicle’s

value when it is sold or traded in. Table 3 gives a sample comparison of some

vehicle models.

4 Estimation Results and Discussions

In this section, I first discuss the estimation results from previous dynamic

demand model in section 4.1. To complete the picture of how gasoline prices

affect the fleet composition and thus the fuel efficiency in each city, I further

conduct simulations of gasoline tax increases in section 4.2.
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Variable Houston, TX San Francisco, CA
Average Gasoline Price ($) 2.25 2.67

New Vehicle
Average Fuel Efficiency (MPG) 22.45 25.79
Percentage of Passenger Car 0.45 0.61
Percentage of SUV 0.34 0.31
Percentage of Trucks 0.21 0.07

Vehicle Stocks
Average Fuel Efficiency (MPG) 22.99 25.15
Percentage of Passenger Car 0.56 0.73
Percentage of SUV 0.24 0.20
Percentage of Trucks 0.20 0.06
Average Fleet Age (Year) 8.63 9.71

Table 2: Sample Demographic Statistics of Houston and San Francisco, 2003-
2009
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Model Make Year 1 Year 2 Year 3 Year 4 Year 5

Audi A6 1 0.41 0.34 0.29 0.24
BMW X5 1 0.69 0.59 0.49 0.41

Chrysler PT Cruiser 1 0.33 0.28 0.24 0.2
Ford Focus 1 0.45 0.36 0.28 0.24
Honda Civic 1 0.58 0.51 0.47 0.43
Kia Optima 1 0.36 0.27 0.21 0.18

Nissan Altima 1 0.6 0.51 0.43 0.37
Pontiac G6 1 0.39 0.31 0.25 0.21
Toyota Corolla 1 0.61 0.54 0.48 0.44
VW Passat 1 0.42 0.35 0.3 0.26
Volvo S60 1 0.46 0.36 0.29 0.24

Table 3: Average Resale Value of Selected Vehicle Models

4.1 Results

Estimation results of the dynamic demand model are described in this sec-

tion. The first two columns of Table 4 reports parameter estimates for the

dynamic demand specification using Houston data. The top panel of Table 4

presents the estimated parameters associated with the characteristics of the

vehicle in consumer’s utility specification. In this model, I use three random

coefficients, vehicle price, fuel cost, and constant term. The estimated stan-

dard deviation for random coefficients are listed in the bottom panel. The

price variable is in log term. As expected, price contributes negatively to con-

sumer’s utility, with a base coefficient of −0.6445 and a standard deviation of

the random coefficient of 0.0328. The constant term has a base coefficient of

−2.0091, suggesting that a person with mean tastes would obtain a negative

gross flow utility from a vehicle with all other characteristics zero (relative

to the outside option). In addition, the significant standard deviation for the
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constant term indicates the heterogeneity of consumer’s utility from a vehicle

of zero characteristics, while still negative.

The third random coefficient, fuel cost, is of special interest to us in

this paper. Fuel cost, measured by dollar per mile, is defined by the real

price of unleaded gasoline prices divided by the fuel efficiency of the vehicle

model (in MPG). It is often viewed as the unit price of driving and in this

case I use this as a proxy for operating costs. The base coefficient for fuel

cost is negative and significant, which is consistent with our expectation: an

increase in operating cost per mile for any vehicle can be expected to reduce

consumer’s utility from owning the vehicle. The standard deviation of fuel

cost is precisely estimated at 2.6510, implying a large variance in distribution

of of consumer’s tastes for fuel cost, thus gasoline prices.

I also include four variables to express vehicle characteristics, including

two dummy variables that indicate vehicle’s type (passenger car, SUV or light

trucks). All of the characteristics are significant except for dummy variable

SUV. The coefficients for characteristics, in general, are much smaller than

random coefficients in terms of absolute values. Positive and significant coef-

ficients for horsepower to weight ratio and vehicle size show that consumers

in Houston would prefer larger cars with bigger horsepower. The coefficient

for dummy variable Passenger Car supports a similar argument: the nega-

tive sign indicate that owning a passenger car would contribute negatively

to consumer’s utility in general.

The last two columns of Table 4 present estimation parameters from a

static model for comparison. The static model follows BLP and estimates a

random coefficient discrete choice model. Under the static setting, consumer

choose between different types of new cars and they face no dynamic decisions

from gasoline price and product feature evolutions. The coefficient for fuel

cost in the static model is −5.3372, which is much smaller than that in the

dynamic model. This result coincides with our previous argument: in a static

model without consumer’s expectation for future gasoline prices changes, we
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Dynamic Model Static Model
Variable Estimates Std.Err Estimates Std.Err

Constant -2.0091 0.2506 1.9191 0.5723
α
g
i Fuel Cost (Dollar per Mile) -10.0105 4.8899 -5.3372 0.8768

α
p
i LN Price -0.6445 0.1197 -0.9660 0.1354

αx HP/Weight 0.0308 0.0033 0.7728 0.4671
SIZE (Length × Width ×10−3) 0.1115 0.0362 0.0110 0.0023
Passenger Car -0.7232 0.3264 0.5931 0.1615
SUV 0.0613 0.2499 0.8631 0.1551

Standard Deviation of Random Coefficients (Σ1/2)

Constant 0.0271 0.0086 0.0003 3.2436
Fuel Cost 2.6510 0.6050 0.7349 0.908
LN Price 0.0328 0.0098 0.0288 0.1148

Table 4: Dynamic Demand Estimation Results–Houston

may underestimate the effect of gasoline prices on consumer’s vehicle choices.

As with any discrete choice model, the coefficients from Table 4 do not

give the marginal effects on owning probabilities. I translate the parameters

into marginal effects on fuel cost changes for different types of cars in Table

7. In particular, I compute the average percentage change in probabilities

of new car purchase, as well as used car holdings, holding other variables

fixed. In column 1, I report the average percentage change for one dollar

increase in fuel cost in Houston. For new car purchase, the probabilities of

purchasing for passenger cars, SUVs and light trucks all declined. SUV sales

receives the biggest impact in Houston and decreases by 5.01% , followed by

passenger cars of a 4.96% decline in purchasing probability. However, the

sales of light trucks are least influenced by fuel cost increases, indicating that

consumer’s demand for light trucks in Houston are least elastic. Turning

to vehicle holdings, as gasoline prices increase, the survival probability for
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passenger cars increases by 4.32%, while those for SUVs and light trucks

both decrease in Houston.

As the model relies on the simplifying assumption of logit inclusive value

for consumer’s choice decision, I plot the evolution of logit inclusive value δit

to see how it evolves over time. In general, the logit inclusive value represent

the expected value consumers get from all vehicle models on the market and

are computed based on the structural parameters estimated previously. Fig-

ure 5 plot the 20 percentile, 50 percentile and 90 percentile of logit inclusive

value over time. It shows that in general, there is an upward, as well as

roughly linear, trend over time, which indicate that consumers’ valuation for

vehicles is increasing in the sample period.

In addition, I also estimate a similar model for San Francisco. The com-

parison between the results for two cities with distinctive geographic and

demographic characteristics would reveal how gasoline price will impact con-

sumer’s choice for vehicle replacement under different circumstances. The

estimation results for San Francisco are presented in Table 5. The signs for

random coefficients are the same for Houston and San Francisco, suggesting

that gasoline prices and vehicle prices contribute negatively to consumers’

utilities. Standard deviations for random parameters are all statistically sig-

nificant, indicating that there is substantial variations in the consumer’s taste

for vehicle price and operating costs.

To see how consumers in different markets react differently to vehicle

attributes, Table 6 compares signs of the estimated parameters for the two

cities specifically. Similar to Houston, the higher the horsepower to weight

ratio, the greater the utility consumers received from owing the vehicle. On

the other hand, it is worthy to notice two distinctive differences of estimated

parameters between the two cities: vehicle size and dummy variable for pas-

senger car. The coefficient for vehicle size is negative and significant, while

the dummy variable passenger car is precisely estimated to be positive. This

result suggest that, in San Francisco, consumers tend to prefer a passen-
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Variable Estimates Std.Err

Constant -5.2463 1.3713
Fuel Cost (Dollar per Mile) -34.5239 15.3594
LN Price -0.8125 0.1476
HP/Weight 0.0085 0.0192
SIZE (Length × Width/1000) -0.0073 0.0029
Passenger Car 0.1773 0.0795
SUV 0.0526 0.0074

Standard Deviation Coefficients (Σ1/2)
Constant 0.0033 9.2568
Fuel Cost 0.0055 4.8144
LN Price 0.0051 3.9117

Table 5: Dynamic Demand Estimation Results – San Francisco

ger car with smaller size, which is opposite to consumer’s taste in Houston.

It somehow reflects the distinctive environment in the two cities, in terms

of variation in vehicle composition, city characteristics and gasoline prices.

The marginal effects on fuel cost changes in San Francisco are also slightly

different from that in Houston. Although the purchasing probabilities of pas-

senger cars, SUVs and light trucks all decrease due to the increase of gasoline

prices, the sales of trucks are the one that get the largest impacts, followed

by passenger cars and SUVs.

4.2 Policy Simulation and Comparison

The main purpose for this paper is to investigate how gasoline prices affect

vehicle fuel efficiency in a city. In the previous section, gasoline price is found

to have significant effects on consumer’s utility of owning a vehicle, thus a
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Variable Sign of Coefficients
Houston San Francisco

Constant - -
αg
i Fuel Cost (Dollar per Mile) - -
αp
i LN Price - -
αx HP/Weight + +

SIZE (Length × Width ×10−3) + -
Passenger Car - +
SUV + +

Table 6: Dynamic Demand Estimation Results Comparison: Houston v.s.
San Francisco

Change in Probability (%) Houston San Francisco

New Car Purchase
Passenger Car -4.96 -5.96
SUV -5.01 -5.89
Truck -3.66 -6.97
Survival Prob
Passenger Car 4.32 5.48
SUV -1.47 -4.39
Truck -2.65 -6.16

Table 7: Marginal Effect on Fuel Cost Change for Different Vehicle Types
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indirect impact of the fuel economy efficiency in a city. To see how fleet fuel

efficiency response to gasoline price changes, thus the operating costs change,

I conduct simulations under two different scenarios.

In particular, I simulate the response of fleet fuel economy under two

different gasoline tax policies. The advantage of this dynamic model is that

I incorporate the dynamic response of consumers to examine the long run

impact on fleet fuel economy of gasoline tax increase. Specifically, in this

section, I first simulate an increase in the federal gasoline tax for 50 cents

per gallon. Since currently average gasoline tax per gallon is around 47.7

cents, including federal, state and local taxes, a 50 cents increase would be

equivalent to doubling current tax rate. Further, I translate the increase of

gasoline prices due to raising gasoline tax into an increase in operating costs,

i.e., fuel cost per mile for each vehicle model available on the market, and

then simulate consumer’s responses in new car purchase and vehicle holdings.

For example, under current average gasoline price of $2.58 in Houston, a 50

cents tax increase would raise the operating costs of a vehicle with 30 MPG

from $0.086 per mile to $0.103 per mile, which is almost 20% increase.

As I mentioned previously, among all industrial countries, U.S. has the

lowest gasoline tax, while Germany has the highest of roughly $4.86 per US

gallon. Although a $4.86 gasoline tax is by no means politically feasible

in the U.S., for illustration purpose, I consider a gasoline tax increase that

would maintain the gasoline prices at a $4 level, which was once reached for

a very short time during the high gasoline price period in mid 2008 in some

cities.

Table 8 presents the effect of gasoline tax increase starting 2003 on average

fuel efficiency economy in Houston and San Francisco in the next 7 years,

holding vehicle characteristics and market demographic variables constant.

Column I and II shows the simulated average fleet fuel efficiency under a $

4 gasoline prices, while column III and IV presents the average MPG in two

cities if I double current gasoline taxes. To make it more clear, Figure 6 and
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7 plot the simulated fleet fuel efficiency to investigate the dynamic response

under different assumptions by examining the time path of the average fuel

efficiency changes. As a benchmark, the black dotted line plots the original

average fuel efficiency in two cities, respectively. In general, after considering

the dynamic effects on consumer choices, we observe significantly different

on-impact response and long-run effects on average MPG. In addition, under

the two alternative gasoline taxes experiments, the time paths of a city ’s

average MPG evolution is also quite different.

For Houston, in general, there is an increase in average MPG, while the

magnitude is relatively small, even under a persistent 4 dollars gasoline prices

over the seven years.

In the long run, under a $4 gasoline price, there is an upward trend

for average fuel efficiency starting from 2003, from 22 MPG to 23.65 MPG.

Specifically, the average fuel efficiency increase dramatically in the first four

years of the policy change. A possible explanation for this would be that new

car purchase are affected more by the tax years for old, inefficient cars to get

scrapped, or exit the market. This could also be true if our model take into

consideration of the used car resale market. Even if a consumer sold a used

car to purchase a new efficient one, as long as the used car is still on road, it

still be counted into the city’s average fuel efficiency. Therefore, we observe

a drop after four years and a rebound in fuel efficiency shortly after when

more old car scrappage happens. On the other hand, if doubling gasoline

taxes in 2003, the average fuel efficiency will increase only in the first three

years and start to decline ever since, resulting in a 0.05 MPG increase only

after seven years. The distinctive dynamic path under double gasoline tax

suggest that if a gasoline tax is not high enough, the impact of a city’s fleet

fuel efficiency will fade out very quickly.

On the contrary, average fuel efficiency in San Francisco is much more

responsive to gasoline price increase under the dynamic setting when con-

sumer expect the price change to be permanent. Unlike the Houston results,
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Keep $4 Gasoline Prices (MPG) Double Current Gasoline Tax (MPG)

Year Houston San Francisco Houston San Francisco

2003 22.39 28.28 22.29 25.72
2004 22.71 29.57 22.15 26.97
2005 23.44 29.41 23.27 27.34
2006 23.86 28.80 23.01 27.53
2007 23.40 29.00 22.61 28.28
2008 23.54 28.47 22.55 27.32
2009 23.65 29.48 22.34 27.09

Table 8: Average Fuel Efficiency (MPG) in Cities Under Different Gasoline
Tax Simulation

when gasoline tax was doubled, the dynamic path of fuel efficiency are quite

persistent for the first four years, with a series of incremental increase to

2.81 miles per gallon in total, It then start to decline slightly over year, to

an increase of 1.37 MPG. Similar to Houston, both time paths experience

a down turn after three to four years of the policy change and a rebound

one to two years after. When the gasoline price increases to four dollars, the

average fuel efficiency in San Francisco, on average, is around 2 miles per

gallon higher than that under double tax, except for the draw down period

after three years. At the end of the sample period, the average fuel efficiency

attains 29.43 miles per gallon, with an increase of 4.76 MPG.

The distinctive differences of consumers’ response to gasoline tax increase

reflect market heterogeneity among U.S. cities that result from consumer’s

tastes for vehicle type, market demographic and geographic features. There-

fore, in order to attain a more effective change in fuel efficiency in cities, a

market-specific tax policies would be preferred.
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Figure 6: Simulated Average MPG in Houston after Tax Increase, 2003-2009
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Figure 7: Simulated Average MPG in San Francisco after Tax Increase, 2003-
2009
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5 Conclusion and Future Work

How much gasoline prices affect consumer’s vehicle choices and fuel economy

efficiency in a market? To answer the question and further study the true

effect of raising gasoline tax, I have estimated a structural dynamic discrete

choice model where heterogeneous consumers choose whether to keep or scrap

a car, whether to purchase a new car and which car to own from a set of new

car models in the market conditional on purchase.

Gasoline price dynamics plays an important role in a consumer’s decision

making process that cannot be captured in a static model, which leads to

underestimating of gasoline price effects. Therefore, a dynamic model of

consumer choice would be crucial to correctly evaluate any policy aimed at

increasing fuel efficiency. In this paper, I specify and estimate a structural

dynamic model of consumer preference for new and used vehicles by exploring

a rich dataset combining vehicle registration and current fleet composition

data of several cities between 2003 and 2009. My model was built based on a

similar framework but distinguished from Gowrisankaran and Rysman (2009)

by taking into consideration of consumer’s dynamic scrappage decisions due

to vehicle depreciation and gasoline price dynamics. Indeed, my model not

only predicts the market share of each vehicle model sold in every period but

also the survival probability for each model-vintage for each sample period.

The comprehensiveness of the model will allow us to generate a complete

picture of how gasoline prices affect the fuel efficiency economy of the whole

fleet composition in a market.

Parameters of my model are then estimated by matching both set of these

predicted shares with the corresponding empirical moments over time. My

findings Comparisons between my preliminary findings and results from a

static model indicate that the effects of gasoline prices on consumer’s vehi-

cle choices are underestimated in a static model, which is in line with our

previous argument. The parameter estimates are then used to evaluate sub-

stantial fuel tax increases that have never been implemented before because
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they could be considered controversial and/or politically risky. The impact

of the increase in fuel tax changes over time as the fleet to be replaced is

increasingly more efficient as old clunkers get scrapped first. My prelim-

inary results suggest that doubling the current tax rate would result in a

decreasing trend of the increase of a city’s fleet fuel efficiency after a mild

initial impact: an immediate increase of 0.29 MPG, raising up to 1.01 MPG

fades out to 0.34 MPG after seven years. Alternatively, a variable tax policy

aimed at keeping the price of gasoline stable at $4 per gallon will increase

fuel efficiency dramatically to 1.86 MPG in the first several years, remaining

mostly stable thereafter, with an increased fuel efficiency of still 1.65 MPG

after seven years.

In the current paper, I conduct a city-by-city analysis to study the dy-

namic effects of gasoline prices on consumer’s vehicle choice due to the com-

plexity of the problem. In the future, I will further do a comprehensive

analysis that incorporate multiple markets. The data covers new and used

vehicle registration data for nineteen markets (cities) in the United States.

These markets range from big cites like Houston, TX to small towns like

Lancaster, PA. By including the demographic variables, like household in-

come, family size, I can model consumer heterogeneity in each market as

an empirical nonparametric distribution of demographic and further identify

how consumer’s heterogeneous preferences over gasoline price dynamics vary

with demographics.
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