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Abstract

In this paper we examine the finite sample performance of two estimators one devel-
oped by Blundell, Chen, and Kristensen (2007) (BCK) and the other by Gagliardini and
Scaillet (2007) (TIR). This paper focuses on the generalization and expansion of these
estimators to a full nonparametric specification with multiple regressors. In relation to
the classic weak instruments literature, we provide intuition on the examination of instru-
ments relevance when the structural function is assumed to be unknown.

Simulations indicate that both estimators perform quite well in higher dimensions.
This research also provides insights on the performance of bootstrapped confidence inter-
vals for both estimators. We document that the BCK estimator’s coverage probabilities
are near their nominal levels even in small samples as long as the sieve order of expansion
is restricted. The coverage probability for the TIR estimator’s bootstrapped confidence
intervals are near their nominal levels even when the order of sieve approximation is large.
These results suggest that in small samples the TIR estimator has a much smaller bias
then the BCK estimator but its variance is much larger. We provide two empirical ex-
amples. One is the classic wage returns to education example and the other looks at the
relationship of corruption and GDP to economic growth. Results here suggests that the
impact of corruption on growth depends nonlinearly on a countries level of development.

JEL codes: C13, C14, C15

Keywords: Nonparametric, Instrumental Variables, Information Regularized Estimators
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1 Introduction

Economists are often interested in estimating functional relationships between a dependant

variable y and a set of explanatory variables x = [y2 x1]. If the functional relationship is known,

for example the relationship is linear in the parameters, then it is straightforward to estimate

the functional relationship between variables using well know parametric techniques. In most

cases the functional relationship is not known which can result in model mis-specification. One

way to overcome this problem is to estimate the functional relationship nonparametrically. In

this case, the economist no longer estimates a set of parameters. Instead she estimates points

on the unknown function. To illustrate this consider the following model which assumes the

error enters additively.

y = φ(x) + v (1)

If v is conditionally independent of x, E(v|x) = 0, φ can be estimated using standard techniques.

However if E(v|x) 6= 0 more information will be required to identify φ. The parametric solution

is to select instruments conditionally independent of v and correlated with x. This works fine

in the parametric case but using instruments for non-parametric identification is non-trivial.

The difficulty arises because the mapping of the distribution of the data into the regression

function is not continuous(Kress, 1999).

Newey and Powell (2003) overcome ill-posedness by imposing bounds on the higher order

derivatives of φ effectively making the mapping continuous. A similar approach is followed by Ai

and Chen (2003) for a semi-parametric estimation problem of the same variety. Both implement

a two stage estimation procedure wherein the estimate of φ is given by series approximation.

φ(x) ∼=
J∑
j=1

γjE[pj(x)|z] (2)

Where pj() is a sequence of basis functions. Therefore the first stage is to estimate E[pj(x)|z]

non-parametrically and estimate γ’s in the second stage by some minimum distance criterion.
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Blundell et al. (2007) is the only empirical application that has explored this type of estimator.

They estimate a shape invariant Engle curve system which admits a semi-parametric form.

In their model demographic scaling parameters enter parametrically and total expenditure is

treated as endogenous. Their semiparametric model and estimation technique is adapted from

Ai and Chen (2003). Hall and Horowitz (2005) present two methods for estimating φ based on

kernel and series approximating regressions and derive optimal convergence rates.

Severini and Tripathi (2006) explore identification issues with these models and note

that point wise identification can easily fail. Their work also provides intuition on how to

determine the identified part of the structural function φ. They examine the relationship

between identification of the structural function and identification of linear functionals and

uncover a connection between them.

Newey and Powell (2003) show that in their framework a condition needed for identifi-

cation is the completeness of the conditional distribution f(x|z). Severini and Tripathi (2006)

shows that completeness of the conditional distribution is equivalent to a correlation between

the model space and the instrument space. As we will show later, ill-posedness can be caused

by weak or irrelevant instruments in the sense that there is a very low correlation between the

model space and the instrument space.

Gagliardini and Scaillet (2008) and Darolles, Florens, and Renault (2006) propose esti-

mators which exploit information in the L2 norms of φ and its first derivative by regularizing

the second stage estimates with their Sobelev norm. This regularization penalizes the highly

oscillating components to achieve a continuous mapping. They call their estimators Tikhonov

Regularized estimators (TIR) after seminal work by Tikhonov (1963) that proposes this type

of regularization for ill-posed inverse problems such as the one studied in this literature.

A related strand of literature studies specification testing. In this strand two varieties

of specification questions are addressed. First Gagliardini and Scaillet (2007) use the non-

parametric estimation techniques described above to construct statistics that test the validity

of parametric specifications of econometric models. The test of Gagliardini and Scaillet (2007)
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is carried out in the spirit of Härdle and Mammen (1993). The test statistic uses a inte-

grated square error distance metric that measures the distance between the parametric and

non-parametric specifications. Gagliardini and Scaillet (2007) construct this test statistic using

their Tikhonov regularized non-parametric estimate of φ. Horowitz (2006) tests the hypothesis

that φ belongs to some finite dimensional parametric family against a non-parametric alterna-

tive. His test does not require the estimation of φ explicitly. Therefore rendering a solution to

the ill-posed problem is avoided.

Because the test mentioned above is only reasonable when E[v|z] = 0 Horowitz (2008)

presents a test that examines whether the solution is smooth. This is reasonable because

non-existence of a solution is an extreme form of non-smoothness. Horowitz also points out

that even if a solution exists and is not smooth rejecting the model is still reasonable. This

argument calls upon economic theories that dictate many models such as demand or Engle

curves be smooth. Therefore rejection of non-smooth models is justified on two grounds, non

existence and economic mis-specification. Horowitz shows that it is impossible to construct

a uniformly consistent test on a unrestricted set of alternatives thus he restricts his test to

smooth or nonsmooth functions over the null and alternative hypothesis. This is a reasonable

restriction because in most economic applications the function, as guided by theory, is often

smooth is the sense of having s many square-integrable derivatives.

The purpose of this paper is to examine the use of the non-parametric estimators briefly

described above and provide evidence of finite sample performance while offering techniques to

estimate multidimensional φ’s for vector valued applications. We focus on the Blundell et al.

(2007) (BCK) and Gagliardini and Scaillet (2008) (TIR) estimators and verify their performance

in small samples. We explore the performance of bootstrap methods in the construction of

confidence intervals, as well as discuss instrument relevance and speak about issues surrounding

the estimation of partial effects all specifically in the context of these estimation techniques.

The paper is organized as follows. In the first section we will present the estimators and

discuss practical estimation issues including the extension to multiple dimensions. The second
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section will discuss ill-posedness and how it relates to the literature on weak identification.

Thirdly we conduct monte carlo experiments and present results from these simulations. The

fourth section looks at two empirical applications. Finally concluding remarks are made along

with suggestions for future work.

2 The Estimators

In this section we present the estimator constructed by Blundell et al. (2007) and Gagliardini

and Scaillet (2007). Both methods used rely upon a minimum distance criteria that can be

posed in a very general framework. Take the following model:

y = φ(y2) + v (3)

Under the assumption that E(v|y2) 6= 0 estimation of φ(y2) by traditional nonparametric meth-

ods yields poor and meaningless results. Now assume we observe a variable z that satisfies the

following condition E(v|z) = 0. Taking expectations over Equation (3) we obtain the following

equation:

m(φ(y2), z) = E(φ(y2)|z)− E(y|z) = 0 (4)

In operator notation let T (φ) = E(φ(y2)|z) and r = E(y|z) so that we can write Equation (4)

as:

T (φ)(z)− r(z) = 0 (5)

The solution to Equation (5) is said to be well-posed if the solution exists, is unique, and

continuous in r. Ill-posedness occurs because T−1 need not be continuous. One approach to

dealing with ill-posedness is through regularization which is generally represented as follows:

φλ = argmin
φ
‖T (φ)− r‖2 + λ‖φ‖ (6)
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Both Blundell et al. (2007) and Gagliardini and Scaillet (2007) rely upon the method above

to estimate φλ. ‖φ‖ is the norm of the function and its derivatives, commonly referred to as

a Sobolev norm, used by both Blundell et al. (2007) and Gagliardini and Scaillet (2007). ‖φ‖

is a penalization matrix determined by the Sobolev norm of ‖φ‖, heretofore C, and a scaling

parameter λ. An estimate of φ can be found by minimizing ‖T (φ)−r‖2 subject to the constraint

that ‖φ‖ ≤ p. In practice the constraint on the penalization matrix may be unknown therefore

Equation (6) will be solved for a given value of λ as suggested by Blundell et al. (2007).

Gagliardini and Scaillet (2007) approximate the mean integrated squared error of their

estimator and propose that in practice one should choose a penalization parameter λ such

that the MISE is minimized. Although this practice is not theoretically justifiable data driven

methods for selection of the penalization parameter improve the finite sample performance of the

estimator as simulations conducted later show. Blundell et al. (2007) take a different approach

suggesting that one might choose various values of penalization parameters and display the

results for each choice.

The main difference between the TIR estimator and the BCK estimator is how each

component of Equation (6) is estimated. For example, Blundell et al. (2007) estimate both

T (φ) and r via sieve estimation while Gagliardini and Scaillet (2007) use a combination of sieve

estimation and kernel methods to obtain a solution to the empirical counterpart to Equation

(6). Both methods rely upon the calculation of the penalization matrix C. Blundell et al. (2007)

provide the following equation characterizing their calculation of the kp+1
n × kp+1

n penalization

matrix C:

Cr =

∫
[∇rΨk(y2, x1)]′[∇rΨk(y2, x1)]dy2 (7)

Ψk(y2, x1) is the complete set of basis functions which is N × kp+1
n if x1 is a N × p matrix. As

in Blundell et al. (2007) one might choose r = 0 and r = 2 so that C is constructed as:

C =

∫
[Ψk(y2, x1)]′[Ψk(y2, x1)]dy2 +

∫
[∇2Ψk(y2, x1)]′[∇2Ψk(y2, x1)]dy2 (8)
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The choice of the order of derivative should be chosen based upon the application at hand.

In the case of Blundell et al. (2007), they choose the order of derivative based upon the type

of underlying function they focus on estimating. In practice the derivative and integration is

with respect to the endogenous variable only leaving this matrix as a function of the exogenous

variables. One approach might be to calculate the value for the penalization matrix at the

mean values of the remaining exogenous variables. In monte carlo simulations the choice of

which point does not seem to make any quantitative difference. Blundell et al. (2007) show

that their estimator φ̂BCK(y2, x1) has a closed form solution given by:

Π̂BCK
λ = (Ψ′B(B′B)−1B′Ψ + λC)−1Ψ′B(B′B)−1B′y (9)

For a single instrumental variable, B(z, x1) is a N × kp+1
n complete set of basis functions. We

construct φ̂BCK(y2, x1) by multiplying our N×kp+1
n basis functions Ψk(y2, x1) by the kp+1

n vector

of coefficients Π̂BCK
λ . Similarly, Gagliardini and Scaillet (2007) show that their estimator also

has a closed form solution expressed as:

Π̂TIR
λ = (λNC +

1

N
P̂ ′P̂ )−1 1

N
P̂ ′R̂ (10)

P̂ = Ê(Ψk(y2, x1)|z, x1) and R̂ = Ω(z, x1)Ê(Ψk(y2, x1)|z, x1) where Ω(z, x1) is an optimal

weighting matrix. Gagliardini and Scaillet (2007) estimate both P̂ and R̂ by kernel methods.

2.1 Instrument Relevance

Classic foundational work by Nelson and Startz (1990) and Staiger and Stock (1997) documents

the importance of paying close attention to the quality of instruments with respect to their

relevance. When the function φ(x) is known to be linear in parameters, Staiger and Stock
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(1997) show that an F-stat of 10 or greater on the instruments in the first stage regression is

needed to have confidence in point estimation and thus inference. Under an unknown φ(x), not

much is known regarding how one might characterize what Staiger and Stock (1997) refer to

as “weak instruments”. It is intuitive that estimation in the nonparametric case should require

more from the data and thus it should be true that the rule of thumb proposed by Staiger and

Stock (1997) should not uniformly apply to estimation methods under an unknown φ(x). With

respect to the estimation method proposed by Blundell et al. (2007), they describe what they

refer to as a sieve measure of ill-posedness:

τn ≡ sup
φ(y2)∈Υn:φ 6=0

√
E{φ(y2)}2√

E{E[φ(y2)|z]}2
≤ 1

µkn

(11)

where µkn are the singular values of the matrix T ∗T . Defining T (φ)(·) = E[φ(y2)|z = ·] and

T ∗ is the adjoint operator of T . The singular values are particularly important as the rate of

the decay serves as a measure of instrument relevance. The slower the rate of decay the faster

the rate of convergence of the estimator. Ideally one estimates the values of µkn and examines

the rate of decay with respect to some benchmark. For example, if y2 and z are jointly normal

with correlation ρ then the rate of convergence of the singular values can be expressed as an

exponential function. Unfortunately, the rate of convergence depends upon the underlying

distribution of f(y2, z) which is unknown to the economist and the particular sieve being used.

One approach is to assume an underlying distribution for f(y2, z) and then see if there is an

optimal rate of decay for that distribution and particular basis function approximation. If

the performance of these estimators is independent of the type of basis function being used,

this might be a worthy approach. From this derivation a distance test can be derived for a

given distribution of data. Notice that for Equation (11) when z is replaced by y2, assuming

exogeneity of y2, then τn is identically 1. In practice we can estimate this value to see how

close it is to 1. If the instruments are less than perfect then the value for Equation (11) will

be away from 1. The problem is we don’t necessarily know how far from 1 is too far. To get
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some idea of how this estimator is distributed Figure (1) shows the probability density of the

empirical analog to Equation (11) across three levels of correlation between the instrument z

and y2 under joint normality for cosine basis functions of the order five. From the plot we

can see that when the instruments are strong the estimator τ̂n is distributed tightly around a

median value of 1.04. For γ = .5, τ̂n is centered around a median value of 1.14 as compared

to a median value of 1.17 when the instruments are completely irrelevant (γ = 0). This is an

interesting result because it suggest that we could observe values of τ̂n close to 1 even though

our instruments are completely irrelevant. From this, it seems that using this as a measure

of instrument relevance might not be terribly informative. However, it is not likely to observe

values for τ̂n greater than 1.4 when γ = .5, so if large values of τ̂n are observed in practice it

would certainly be an indicator of weak instruments.

3 Monte Carlo Simulations

3.1 Single Regressor Case

This section investigates the finite sample performance of the TIR and BCK estimators for a

single endogenous regressor over various functional forms and orders of approximation. The

data is generated by the following process, the joint density,


z

v

y2

 d∼N




0

0

0

 ,


1 γ 0

γ 1 ρ

0 ρ 1


 (12)

, and the functional relationship,

y = β0y
∗
2 + (1− β0) sin(απy∗2) + v (13)
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Notice that α controls the frequency of the function and β0 the degree of linearity. Here

y∗2 = Φ(y2−ȳ2
σy2

). We allow α to vary which controls the “waviness” of the function in which case

the order of approximation should be higher in order to pick up on the higher frequency.

Tables (1) and (2) present coverage probabilities of the quantiles for the BCK and TIR

estimators respectively. Table (1) displays coverage probabilities for the second through seventh

order approximations of the regression function. It is clear that once the polynomial reach the

fourth order the confidence intervals contain 96 percent of the bootstrapped estimates or better.

On the other hand Table (2) displays the coverage probabilities for alternative forms of the data

generation process. Here the polynomial’s order of approximation is 6. Results here document

that the estimator performs uniformly well over the different permutations of the function. In

the next section we continue by investigating the case where our regression function has to

independent variates.

3.2 Multiple Independent Variables

In this section we increase the dimension of the estimation problem and investigate the finite

sample performance of the TIR and BCK estimators through Monte Carlo simulations. We

generate the data as follows:


z

v

y2

 d∼N




0

0

0

 ,


1 γ 0

γ 1 ρ

0 ρ 1


 (14)

The additional exogenous variable is x1
d∼N(0, 1). We generate the dependent variable as follows:

y = β0y
∗
2 + (1− β0) sin(απy∗2) + β1x

∗
1 + (1− β1) sin(απx∗1) + v (15)

Figures (1) and (2) portray a representative function in the top left, that has β0 = 0,
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β1 = 0, and α = 2. Figure (1) plots the TIR estimate of the function. A first glace reveals

that the estimator picks up all the relevant curvature in the true function. Additionally, the

estimator also picks up the relevant scale. Subplot c. For this figure shows that the measurement

error is small particularly over the interior of the function, with larger error revealing itself on

the perimeter of the grid where the true model generates observations with lower probability.

Figure (2) plots the same set of diagrams for the BCK estimates of the true function. The BCK

estimator does a relatively good job picking up the contours in the interior of the function’s

support, However in subplot b of Figure (2) the estimator misses the true function with greater

regularity. A glance at subplot c. of this figure verifies that the estimator does well where it has

more information on the data generation process but comes up short and to a comparatively

greater extent than the TIR estimator.

Table (3) summarizes and supports the discussion of the preceding paragraph by providing

some metrics on relative performance of the estimators as compared to traditional sieve esti-

mates that do not account for the endogeneity. This table documents that the TIR estimates

have and smaller point wise bias however the variance of the TIR estimates are more than twice

that of the BCK estimates. The mean square error is also not surprisingly higher for the TIR

than the BCK estimates. We have provided a results appendix to the paper that provides more

such tables for small and larger sample sizes and various permutations of the parameters for

the dependant variable generation function. The findings are consistent over all the results. In

general we find that in smaller samples the TIR estimates have a significantly smaller bias than

the BCK estimates. On the other hand the BCK estimates have smaller variance that the TIR

estimates. The paper continues with two empirical examples.

4 Two Applications

In this section we present a classic text book example which is measuring the returns to ed-

ucation. It is clear that one may propose a relationship between wages and education as the
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following:

log(wage) = φ(educ∗, X∗) + v (16)

It is widely accepted that E(v|educ) 6= 0 thus education is endogenous in the above equation.

If the function φ(educ,X) is known, then we can proceed with the usual two-stage least squares

estimation. In this example, we do not proceed under the assumption that this function is

known but instead rely upon the estimators above combined with bootstrapped confidence

intervals to provide some guidance as to what the function φ(educ,X) looks like. For the first

application, we assume only one additional exogenous variable is contained in X which we take

to be age. Thus the structural function we are interested in is φ(educ, age). The methods

outlined in section 2.1 for expanding the dimension of the estimator would allow us to include

more exogenous variables, for expositional purposes and graphical parsimony we proceed with

a bivariate example. We estimate the wage equation across a variety of values for kn.

Figure (4) shows the TIR estimate of φ(educ∗, age∗). We transform values educ and age

where educ = Φ( educ
∗− ¯educ∗

σeduc∗
) and age = Φ(age

∗− ¯age∗

σage∗
) to fall within the unit interval. This is

done because the estimator utilizes shifted Chebyshev polynomials as basis functions on the

unit interval. The null model is constructed as:

log(wage) = β0 + β1educ+ β2age+ v (17)

We obtain the values for the above coefficients from OLS and then plot the function for those

values. From this, we can then simply check to see if the model implied by the null model are

within the 95% confidence intervals constructed via the bootstrap. The rejection plot in Figure

(3) shows for which regions the null model is not within the confidence intervals. The results

suggest that we are able to reject the null model over a range of age and education values.

The TIR estimate reveals that the relationship between education, age, and wages are in fact

nonlinear over the range for which the linear model is rejected. In Figure (3) we report the

BCK estimates for kn = 3, 4 and TIR estimates for kn = 4. Although the BCK estimates show
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a larger degree of curvature, we fail to reject the null model across all grid points consequently

we fail to reject the simple linear model.

This second economic relationship we examine that has been debated in the literature for

some time is the relationship between economic growth and corruption. From very early work

of Leff (1964), Huntington (1968), and Rose-Ackerman (1978) economists have been interested

in the relationship between economic growth and corruption. It was argued that corruption

could be good for growth or bad for growth depending upon various factors. Some economists

believed that corruption could be beneficial to growth because it can act as “speed money” while

other economists believe that it is detrimental to growth. Due to the nature of institutional

development it also thought to be true that corruption and growth are jointly determined thus

a measure of corruption is likely to be endogenous and thus classical assumptions as needed

in OLS break down. Mauro (1995) was the first to recognize this fact and correct for it under

the assumption that the relationship between corruption and growth is known. Shaw, Katsaiti,

and Jurgilas (2006) later shows that his results are uninformative due to irrelevant instruments

which actually result in unbounded confidence intervals. In the past, most empirical work while

acknowledging the endogeneity, has thought linearly about the relationship between economic

growth and corruption. Most models assume a standard linear framework and employ the

classical 2SLS. In this empirical example we estimate the relationship between growth and

corruption in a purely nonparametric framework allowing for initial conditions to enter the

model nonparametrically. Thus we estimate the following model:

growth = φ(cor, gdp70) + v (18)

We look at the average growth rate over the period of 1960-2004 (growth) using logarithmic

of gross domestic product in 1970 (gdp70) as initial conditions. We chose 1970 as the base year

only because it significantly increased our sample size which ends up as 96. The sample size is

quite small but both estimators can perform moderately well for a moderate choice of kn. We
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also measure the average level of corruption (cor) over the period of 1980-1997. The data for

corruption was taken from Dreher, Kotsogiannis, and McCorriston (2007). The instrumental

variable we use is a measure of ethnolinguistic fractionalization in 1985.

Notice that practically speaking the BCK and TIR estimators produce very different

results. For the null model we present the unconditional mean of the growth rate across

countries. We reject the null over a certain range of corruption and initial conditions. For

this region we construct a contour plot in Figure (7) to get a better idea of what is going on

in this range. Notice that regardless of the initial conditions there is a negative and significant

effect of corruption on economic growth. One thing worth noticing is that the rate at which

corruption impacts growth differs depending upon the initial conditions of the country. For

example consider a country with initial conditions of .5. If corruption in that country increases

from .20 to .35 then the growth rate will fall by .5%. For a country with initial conditions

of approximately .73 the same increase in corruption would yield a 1% decrease in long-run

growth. Therefore the impact of corruption on economic growth depends upon a countries level

of development.

5 Conclusion

This research provides an exploration of recently developed methods for estimating functions

nonparametrically that are identified by instrumental variables. We provided a practical dis-

cussion of two similar estimators and introduced how they could be practically extended to

consider models with multiple regressions that enter a function in some unknown fashion. A

practical discussion of instrument relevance is provided that guides practitioners in their choice

of instruments in the context of the nonparametric instrumental variable estimation problem.

Monte Carlo simulations present a comparison of the finite sample properties of the two esti-

mators. We find that the TIR estimator has a much smaller bias then the BCK estimator but

its variance is much larger.
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Two empirical applications are explored. The classic wage education example is presented

as a familiar context in which readers may evaluate the estimators. The second empirical appli-

cation showcases an example where the use of nonparametric instrumental variable estimators

may be used to provide important insights on questions that have, until now, been largely left

to the speculation of inflexible priors on model specification. Nonparametric methods prove

to be a useful way to conduct economic research without imposing dogmatic structure on new

economic problems. The importance of dealing with endogenously determined relationships is

of utmost importance to empirical practitioners and it is our hope that this research provides

a stepping stone to further adoption of these techniques by economists in all fields.
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10% 25% 50% 75% 90% kn Jn
0.96 0.36 0.94 0.38 0.92 2 10
0.98 0.42 0.97 0.43 0.97 3 10
0.97 0.97 0.98 0.97 0.96 4 10
0.97 0.99 1.00 1.00 0.98 5 10
0.99 1.00 1.00 1.00 1.00 6 10
1.00 1.00 1.00 1.00 1.00 7 10

Table 1: Coverage probabilities for BCK bootstrapped confidence intervals by quantile: N =
100, ρ = .50, γ = .85, β0 = .5, α = 2, λ = 0

10% 25% 50% 75% 90% β0 α
0.94 0.96 0.92 0.94 0.91 0.00 1.00
0.94 0.97 0.92 0.95 0.94 0.50 1.00
0.94 0.95 0.96 0.94 0.92 1.00 1.00
0.97 0.84 0.95 0.85 0.96 0.00 2.00
0.96 0.86 0.96 0.88 0.96 0.50 2.00
0.94 0.95 0.96 0.94 0.94 1.00 2.00

Table 2: Coverage probabilities for TIR bootstrapped confidence intervals by quantile: N = 100,
ρ = .50, γ = .85, and kn = 6
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Table 3: Performance of BCK (λ = 0) and TIR estimators by average pointwise Bias2, Var,
and MSE

N=300, kn = 5, γ = .5, ρ = .5
TIR BCK OLS

β0 = 0, β1 = 0
Bias2 0.016 0.121 0.256
Var 0.588 0.239 0.077

MSE 0.604 0.360 0.333

Table 4: Performance of BCK (λ = 0) and TIR estimators by average pointwise Bias2, Var,
and MSE

N=1000, kn = 5, γ = .5, ρ = .85
TIR BCK OLS

β0 = 0, β1 = 0
Bias2 0.049 0.069 0.715
Var 0.179 0.189 0.010

MSE 0.228 0.258 0.725
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6 Results Appendix

29



(a
)

T
ru

e
Fu

nc
ti

on
(b

)
T

IR
E

st
im

at
or

(c
)

Sq
ua

re
d

D
is

ta
nc

e

F
ig

u
re

9:
E

st
im

at
ed

fu
n
ct

io
n

ve
rs

u
s

tr
u
e

fu
n
ct

io
n

fo
r
N

=
30

0,
ρ

=
.5

0,
k
n

=
5,
β

0
=

1,
β

1
=

0,
α

=
2,

an
d
γ

=
.8

5.

30



(a
)

T
ru

e
Fu

nc
ti

on
(b

)
B

C
K

E
st

im
at

or

(c
)

Sq
ua

re
d

D
is

ta
nc

e

F
ig

u
re

10
:

E
st

im
at

ed
fu

n
ct

io
n

ve
rs

u
s

tr
u
e

fu
n
ct

io
n

fo
r
N

=
30

0,
ρ

=
.5

0,
k
n

=
5,
β

0
=

1,
β

1
=

0,
α

=
2,

an
d
γ

=
.8

5.

31



Table 5: Performance of BCK (λ = 0) and TIR estimators by average pointwise Bias2, Var,
and MSE

N=300, kn = 5, γ = .5, ρ = .5
TIR BCK OLS

β0 = 1, β1 = 0
Bias2 0.018 0.115 0.250
Var 0.571 0.232 0.074

MSE 0.588 0.347 0.324
TIR BCK OLS

β0 = 1, β1 = 1
Bias2 0.039 0.102 0.240
Var 0.628 0.228 0.073

MSE 0.667 0.330 0.312

Table 6: Performance of BCK (λ = 0) and TIR estimators by average pointwise Bias2, Var,
and MSE

N=1000, kn = 5, γ = .5, ρ = .85
TIR BCK OLS

β0 = 1, β1 = 0
Bias2 0.057 0.057 0.701
Var 0.178 0.165 0.009

MSE 0.235 0.222 0.710
TIR BCK OLS

β0 = 1, β1 = 1
Bias2 0.048 0.081 0.713
Var 0.185 0.192 0.011

MSE 0.233 0.273 0.725

10% 25% 50% 75% 90% kn Jn
0.95 0.90 0.97 0.91 0.95 2 10
0.95 0.91 0.96 0.94 0.94 3 10
0.95 0.96 0.95 0.95 0.96 4 10
0.96 0.98 0.99 0.98 0.97 5 10
1.00 0.99 1.00 0.99 0.99 6 10
1.00 1.00 1.00 1.00 1.00 7 10

Table 7: Coverage probabilities for BCK bootstrapped confidence intervals by quantile: N =
1000, ρ = .50, γ = .85, β0 = 1, α = 1, λ = 0

32



10% 25% 50% 75% 90% kn Jn
0.94 0.92 0.97 0.91 0.94 2 10
0.95 0.94 0.98 0.93 0.95 3 10
0.95 0.98 0.99 0.99 0.96 4 10
0.98 1.00 1.00 1.00 0.98 5 10
0.99 1.00 1.00 1.00 0.99 6 10
1.00 1.00 1.00 1.00 1.00 7 10

Table 8: Coverage probabilities for BCK bootstrapped confidence intervals by quantile: N =
100, ρ = .50, γ = .85, β0 = 1,α = 1, λ = 0

10% 25% 50% 75% 90% kn Jn
0.88 0.86 0.06 0.92 0.28 2 10
0.96 0.94 0.94 0.89 0.89 3 10
0.97 0.99 0.94 0.97 0.92 4 10
0.99 1.00 1.00 0.98 0.96 5 10
0.99 1.00 1.00 0.99 0.99 6 10
1.00 1.00 1.00 1.00 1.00 7 10

Table 9: Coverage probabilities for BCK bootstrapped confidence intervals by quantile: N =
100, ρ = .50, γ = .85, β0 = 0, α = 1, λ = 0

10% 25% 50% 75% 90% kn Jn
0.88 0.00 0.94 0.00 0.95 2 10
0.92 0.00 0.95 0.00 0.96 3 10
0.94 0.94 0.95 0.93 0.95 4 10
0.95 0.98 0.99 0.97 0.96 5 10
1.00 0.99 0.99 0.98 1.00 6 10
1.00 1.00 1.00 1.00 1.00 7 10

Table 10: Coverage probabilities for BCK bootstrapped confidence intervals by quantile: N =
1000, ρ = .50, γ = .85, β0 = .5, α = 2, λ = 0
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